
Brief introduction to Python

Author: Michele Moro UPD Version 1.0 November 2021

1. What’s Python

1.1. The language and its executor

Python is a general-purpose programming language initially developed by Guido van Rossum during the

90’s. It aims at being dynamic, simple, easy to read, flexible, modern in the sense that it allows forms of

object oriented programming, structured programming, functional programming and implements other

interesting paradigms. One aspect that distinguishes Python from other widespread languages is that it

does not associate a fixed data type to a variable: as a consequence, a form of dynamic strong typing is

applied (i.e. an object type is checked only at runtime). The runtime includes also a garbage collector to

recover memory which is no longer referred by any variable of the running program.

Python can be considered an interpreted language: this means that a given instruction can be

immediately recognized and executed by a sort of virtual machine (the executor). For the sake of

efficiency, the high level source code is actually first translated into a more synthetic bytecode and then

sent to the executor. This translation is essentially transparent to the user, so the impression is that an

instruction is immediately executed and no form of compilation appears to be required before running

the program.

1.2. Python’s strength points

• General purpose: not just for scientific applications

• Portable: it runs on all major PC OS and also on small hardware like Raspberry PI and even

smaller microcontrollers (there are special reduced versions like micropython)

• Accessible to the beginners but powerful for advanced users

Source code Compiler
Executable

Source code Semi-compiler Bytecode

Interpreter

(Virtual Machine)

• Simple syntax: not too many keywords and indentation used for block delimitation (instead of

the more common use of curly brackets or pairs of keywords)

• Integrating modern approaches such as Object oriented programming, exception handling,

interpretation through a virtual machine using runtime checks and a garbage collector, etc.

• Promoting the development of a wide range of libraries and applications: effective use of

Python for Mathematics, Statistics, Astronomy, Climate, GIS, Machine learning and also for

controlling small and big devices for special uses

• Free and open source: this leads to a huge community of practitioners and developers

2. How to start

2.1. Installation

The Python basic package can be downloaded from www.python.org and easily installed

on your machine (detailed instructions on another document). It is suggested to use the ‘pip’ tool to

subsequently install other library modules requested by your applications. The most common ones are:

• matplotlib, for plotting features (which includes also numpy, core library for scientific computing)

• pandas, it provides ready to use high-performance data structures and data analysis tools

• statistics, for simple statistics

• scipy, it provides algorithms for optimization, integration, interpolation, linear algebra elaborations,

algebraic equations, differential equations, statistics and many other classes of problems

2.2. Tools

When you install a version of the Python package from python.org, you install the interpreter and IDLE,

its Integrated Development and Learning Environment. This latter includes a command-line based

interface through which you can immediately try to execute Python instructions and see their effects,

and a text editor to prepare, save programs in source code text files, and run them. The standard

extension for these files is .py.

In order to have more advanced editing features it is possible to get other IDE (Integrated Development

Environment), some of them freely usable for not commercial purposes. The more sophisticated of them

are particularly useful for developing large projects and help to follow and support the entire process of

development. A partial list of such IDE’s follows:

• Thonny (www.thonny.org)

• Wing (www.wingware.com)

• PyCharm Edu (www.jetbrains.com/pycharm-edu/)

• Visual Studio Code (https://code.visualstudio.com/)

• Vim (www.vim.org)

• Atom (https://atom.io/)

• Eclipse + PyDev + LiClipse (www.eclipse.org www.pydev.org www.liclipse.com)

• GNU Emacs (www.gnu.org/software/emacs/)

• Spyder (component of Anaconda www.spyder-ide.org)

2.3. Documentation

• The official Python language documentation and tutorial are available on docs.python.org/3/

• A language reference by w3schools

https://www.w3schools.com/python/python_reference.asp

• Another language reference https://python-reference.readthedocs.io/en/latest/

• A language reference card https://perso.limsi.fr/pointal/_media/python:cours:abregepython-

english.pdf

• Various useful resources https://www.reddit.com/r/learnpython/wiki/index

3. Python and Jupyter Notebook

3.1. What’s Jupyter Notebook

The Jupyter Notebook is an incredibly powerful tool: differently from other teaching approaches, it

allows to present tutorials, examples, exercises, even complex projects in an intuitive and interactive

way. You can combine in just one place description/narrative text, mathematical equations, runnable

code, visualizations, and other media. By integrating code and its output into a single document, the

learner is helped to fully understand the presented content without continuously switching from one

tool to another, making the explanations more understandable, repeatable, and shareable.

3.2. How to run a notebook in the Python environment

A notebook is namely a file with extension .ipynb and must be interpreted by a server. The server can

run on your own machine. For example, if you have installed the Anaconda Python platform

(www.anaconda.com/products/individual), you got also the Jupyter notebook software; on Windows

Anaconda adds a shortcut to run the server.

If you have Python and other modules already installed, as suggested above, you can use again the pip

tool to add the jupyterlab module to your system. Then, on a terminal window (command prompt), you

give the command:

jupyter notebook

to run the server. When started, it activates your predefined browser to connect to the address

http://localhost:8888 which is the port connected to the server. In the Files tab of the showed page you

see your working directory, so you can navigate through your folders to select a notebook (a .ipynb file)

to run and/or edit. The Running tab lists all the active (running) notebooks, while the Clusters tab is not

of our current interest.

