

ENGINE ERASMUS+ 2020‐1‐PL01‐KA226‐HE‐095653 Page | 1

Teaching online electronics, microcontrollers and
programming in Higher Education

Hardware Implementation of Algorithms

1. Testbench and simulation. Frequency divider.

Lead Partner: Warsaw University of Technology

Authors: Lukasz Mik

University of Applied Sciences in Tarnow

GRANT NUMBER: 2020‐1‐PL01‐KA226‐HE‐095653

ENGINE ERASMUS+ 2020‐1‐PL01‐KA226‐HE‐095653 Page | 2

Declaration

This laboratory instruction has been prepared in the context of the ENGINE project. Where other
published and unpublished source materials have been used, these have been acknowledged.

Copyright

© Copyright 2021 - 2023 the ENGINE Consortium

Warsaw University of Technology (Poland)

International Hellenic University (IHU) (Greece)

European Lab for Educational Technology- EDUMOTIVA (Greece)

University of Padova (Italy)

University of Applied Sciences in Tarnow (Poland)

All rights reserved.

This document is licensed to the public under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.

Funding Disclaimer

This project has been funded with support from the European Commission. This report reflects the
views only of the author, and the Commission cannot be held responsible for any use which may be
made of the information contained therein.

ENGINE ERASMUS+ 2020‐1‐PL01‐KA226‐HE‐095653 Page | 3

I. Testbench

ISE Webpack software (free version of ISE Design Suite) includes tools for writing

test procedures, the so-called testbench and projects simulation. VHDL has many different

ways to define the input signals of a test unit. In this class, a basic example will be presented

that can be used as a template for more complex testing procedures.

KROK 1: Creating a new project in the program using ready modules *.vhd and *.ucf

Launch ISE Design Suite 14.7 from the desktop shortcut or from Start → Programs

→ Xilinx Design Tools → 64-bit Project Navigator. If there are any projects open, close

them all by selecting File → Close Project. Then create a new project named one_hot_cnt

according to the lab1.pdf instruction, omitting the creation of a new module *.vhd, and only

adding the sources included with this exercise: one_hot_cnt.vhd and one_hot_cnt.ucf files.

The method of adding new sources is shown in the figure below.

After creating the project and importing the necessary files, the program window

should look like this:

ENGINE ERASMUS+ 2020‐1‐PL01‐KA226‐HE‐095653 Page | 4

The design unit configuration has one 8-bit vector output - cout and three 1-bit inputs:

clk, enable and reset.

In the description of the ring counter architecture, there is one process that has only

a clock signal (clk) in the sensitivity list. The clock edge is checked in the process. If it is

rising, the status of the reset input is also checked. If there is a logical 0 on this input, then

the youngest bit of the count vector is set to one. Otherwise, the state of the enable input is

checked. If there is a logical 0 on it, then with each rising edge of the clock, the oldest bit

(weight 7) goes to the place of the youngest (weight 0), and this in turn goes 1 position

higher.

process (clk)
begin
if (rising_edge(clk)) then
 if (reset = '0') then
 count <= "00000001";
 elsif (enable = '0') then

count <= (count(6) & count(5) & count(4) & count(3) & count(2) &
 count(1) & count(0) & count(7));

 end if;
end if;
end process;

The '&' operator is responsible for gluing individual bits into a count vector. The count

signal, defined within the architecture, is assigned to the cout output. The cout <= count

assignment is a concurrent operation with the process (executed in parallel).

ENGINE ERASMUS+ 2020‐1‐PL01‐KA226‐HE‐095653 Page | 5

Before generating test vectors, check the project syntactically (double click on

Synthesize - XST) and then generate the programming file (double click on Generate

Programming File). Dwukrotne kliknięcie tylko na ostatnią opcję implikuje użycie

wszystkich poprzednich tj. Synthesize – XST oraz Implementing Design.

KROK 2: Create a test routine (Testbench VHDL file).

Add a new file to the project by selecting the New Source option from the context menu.

Then, from the list of files that can be created, select VHDL Test Bench.

In order to easily identify files in the project, it is best to end the name of the file with

the test procedure with the string "_tb". This is an abbreviation of the word testbench, making

it easy to find this file in the future. In the next dialog that appears, select "one_hot_cnt" as

ENGINE ERASMUS+ 2020‐1‐PL01‐KA226‐HE‐095653 Page | 6

the source. In the project window, change the source view from Implementation to

Simulation. The editor will take us to the view of files prepared for simulation.

From the drop-down list in the same window, the Behavioral option should be selected,

which means that our design module will be simulated in terms of functionality at this stage.

After double-clicking on the name of the file with the test procedure (one_hot_cnt_tb), its

automatically generated content will open in the editor window.

In the description of the architecture of the test unit, a component has been added,

which is our project of the ring counter. It is described with the comment Unit Under Test.

Inside the test unit are the signals connected to the counter and the clock period (clk_period),

defined as a constant. The value of this parameter is automatically set to 10 ns (100 MHz

frequency). In our case, the clock frequency is 12 MHz, so the period will be the reciprocal

of this number and is approximately 83.3 ns. So we need to change the default value to the

one that results from the frequency of the real clock in the system.

ENGINE ERASMUS+ 2020‐1‐PL01‐KA226‐HE‐095653 Page | 7

The program itself automatically generates a clock signal based on a period defined by the

user. The architecture of the test unit also includes a map of connections between its signals

and the component under test.

In the last part of the test procedure template, a process called stim_proc is created, whose

task is to generate input signals forcing the tested system. Generating test signals starts with

a default 100-second delay. Before this delay, we can set a logic '0' on the reset signal (active

state). After this time, we assign logical states '1' and '0' to the reset and enable signals,

respectively. This is followed by a wait of 10 clock periods. In the place of the comment

"- - insert stimulus here" we insert our own test signals. There is no need to generate more

force signals at this stage. The code for the stim_proc process is shown below.

ENGINE ERASMUS+ 2020‐1‐PL01‐KA226‐HE‐095653 Page | 8

II. Behavioral and Post‐Route Simulation

In the next part of the laboratory, methods of project simulation will be discussed

after synthesis, called functional or behavioral simulation, and after implementation in the

target system, called post-route simulation, because it takes into account delays in the target

system.

KROK 1: Functional (behavioral) simulation.

First, we will simulate the project in terms of functionality. For this, it is only

necessary to perform the synthesis (double-clicking the Synthesize - XST option) in the

project implementation mode.

In the simulator processes window, we first run a syntax check of the test file, and

then run a behavioral simulation of the unit under test by double-clicking Simulate

Behavioral Model.

After selecting this option, the simulator window will be launched with all the signals that

are the ports of the test unit.

ENGINE ERASMUS+ 2020‐1‐PL01‐KA226‐HE‐095653 Page | 9

By default, the file with generated waveforms is named Default.wcfg. You can change it

according to your needs.

KROK 2: Post-Route simulation, taking into account delays in the target system.

In the simulation type selection window, select the Post-Route option.

In the simulator processes window, we first run the test file syntax check, and then

we run the Post-Place and Route Model simulation, which is based on the real model of the

integrated circuit for which we are creating the project.

The result of the simulation of signals included in the architecture of the design unit can be

viewed in the updated window of the simulator's waveforms.

ENGINE ERASMUS+ 2020‐1‐PL01‐KA226‐HE‐095653 Page | 10

ENGINE ERASMUS+ 2020‐1‐PL01‐KA226‐HE‐095653 Page | 11

III. Frequency divider

Due to the fact that the human eye is unable to react to changes faster than 20 times

per second, it is therefore necessary to lower the ring counter clock frequency so that the

user can see changes on the LED bar.

Create a new project and add source files named one_hot_cnt_divider.vhd and

one_hot_cnt_divider.ucf to it.

Compared to the previous project, a signal called clk_1Hz was defined in the

declaration list within the architecture, with an initial value of 0. In the description of the

architecture, a new process has been created whose task will be to generate a signal with a

frequency of 1 Hz, based on the value of the "pulse_cnt" variable, which will be incremented

according to the clk clock. The clk_1Hz clock will be changed to the opposite state each time

the "pulse_cnt" variable reaches the value of 6000000, which is half the period of the clock

operating at 1 Hz. In the ring counter process, the clock clk is changed to clk_1Hz. There

was also a change in the name of the design unit - now it is called one_hot_cnt_divider.

Introducing these modifications to the original design resulted in the ring counter having a

bit change rate of 1 Hz.

Compile the project and program the chip with the *.bit configuration file. Check if

everything works as described in the architecture, i.e. the reset button sets the logic '1' at the

beginning of the LED line (D8) and the enable button starts the counter.

TASK:

On the basis of the ring counter and frequency divider projects discussed during the

classes, build your own circuit that will generate a signal at the audio output (connector J2)

with different frequencies, selected using the SW1 - SW6 buttons. The table below shows

the frequencies assigned to specific buttons.

Pushbutton Signal frequency
SW1 396 Hz
SW2 417 Hz
SW3 528 Hz
SW4 639 Hz
SW5 741 Hz
SW6 852 Hz

ENGINE ERASMUS+ 2020‐1‐PL01‐KA226‐HE‐095653 Page | 12

References

 User manual for Elbert V2 - Spartan 3A FPGA Development Board.
 https://numato.com/docs/elbert-v2-spartan-3a-fpga-development-board/

 Xilinx iSim User Guide - UG660 (v14.1)
https://www.xilinx.com/content/dam/xilinx/support/documents/sw_manuals/xilinx14_1/plugin
_ism.pdf

ENGINE ERASMUS+ 2020‐1‐PL01‐KA226‐HE‐095653 Page | 13

References

 User manual for Elbert V2 - Spartan 3A FPGA Development Board.
 https://numato.com/docs/elbert-v2-spartan-3a-fpga-development-board/

 62380 - ISE Install - Installing and Running ISE 10.1 or 14.7 on a Windows 8.1 or Windows 10
machine.
https://support.xilinx.com/s/article/62380?language=en_US

