ENGINI

Teaching online electronics, microcontrollers and
programming in Higher Education

Hardware Implementation of Algorithms

3. State machine in VHDL. Shift register.

Lead Partner: Warsaw University of Technology
Authors: Lukasz Mik

University of Applied Sciences in Tarnow

Erasmus+ GRANT NUMBER: 2020-1-PL01-KA226-HE-095653

Declaration

This laboratory instruction has been prepared in the context of the ENGINE project. Where other
published and unpublished source materials have been used, these have been acknowledged.

Copyright
© Copyright 2021 - 2023 the ENGINE Consortium
Warsaw University of Technology (Poland)
International Hellenic University (IHU) (Greece)
European Lab for Educational Technology- EDUMOTIVA (Greece)
University of Padova (Italy)

University of Applied Sciences in Tarnow (Poland)

All rights reserved.

SIS0

This document is licensed to the public under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.

Funding Disclaimer

This project has been funded with support from the European Commission. This report reflects the
views only of the author, and the Commission cannot be held responsible for any use which may be
made of the information contained therein.

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 2

I. State machine in VHDL

Finite state machines consist of a finite set of states and a set of state transitions. They

are used in applications where unusual sequences of control output signals are required. An

important feature of such an automaton is the ability to assign any sequence of logical states

to its output states. One example of the use of such an automaton is a controller for changing

traffic lights at an intersection or an unusual code counter.

1. State machine based on constants

The following listing shows the code for an unusual up and down counter.

library IEEE;

use IEEE.STD_LOGIC_1164.all;

entity u_d_cnt is port (

clk, res, u_d: in std_logic;
gq: out std_logic_vector(3 downto 9)

)s

end u_d_cnt;

architecture example_arch of u_d_cnt is

signal state: std_logic_vector(3 downto 0);
std_logic_vector(3 downto 0) :
std_logic_vector(3 downto 9) :

constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
begin

process (clk, res) begin

SO:
S2:
S4:
S6:
S8:

Si10:
S11:
S12:
S13:
S14:
S15:

std_logic_vector(3 downto 0) :=

std_logic_vector(3 downto 0) :
std_logic_vector(3 downto 0) :

std_logic_vector(3
std_logic_vector(3
std_logic_vector(3
std_logic_vector(3
std_logic_vector(3
std_logic_vector(3

if (res = '@') then state <= "0000";
elsif (clk='1"' and CLK'event) then
if ud = "1" then
case state is

when
when
when
when
when
when
when
when
when
when
when

SO =>
S2 =>
S4 =>
S6 =>
S8 =>
S10 =>
S11 =>
S12 =>
S13 =>
S14 =>
others

end case;
elsif u_d = '0' then
case state 1is

state
state
state
state
state
state
state
state
state
state
=> st

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653

<=
<=
<=
<=
<=
<=
<=
<=
<=
<=
ate

downto
downto
downto
downto
downto
downto

S2;
S4;
S6;
S8;
S10;
S11;
S12;
S13;
S14;
S15;
<= SO;

0)
0)
0)
0)
0)
)

"0000" ;
"0010";
"9100" ;
"9110";
"1000" ;
"1010";
"1011";
"1100";
"1101";
"1110";
"1111";

Page | 3

when S@ => state <= S15;
when S2 => state <= SO;
when S4 => state <= S2;
when S6 => state <= S4;
when S8 => state <= S6;
when S10 => state <= S8;
when S11 => state <= S10;
when S12 => state <= S11;
when S13 => state <= S12;
when S14 => state <= S13;
when S15 => state <= S14;
when others => state <= S@;
end case;
end if;
end if;

g <= state;

end process;

end example_arch;

The counting direction depends on the u_d input state. The counter counts in a cycle:
0,2,4,6,8,10,11,12,13, 14,15,0,2 ... (up) ... or 0, 15, 14,13, 12,11, 10 8, 6,4, 2, 0, 15,
14 ... (down). The counter states are changed under the influence of clock pulses fed to the
clk input, and resetting is provided by the res asynchronous reset input. The graphic symbol

of the project (a) and the corresponding transition graph (b) are shown in the figure below.

In case of defining a sequence of output states of the automaton, it is necessary to
specify all states occurring in it, and for each current state to determine its subsequent states.
When we use the case instruction, the condition for the correctness of the description is to
define all possible values of the selection variable (in the example it is the state signal).

The automaton system in the example consists of 4 flip-flops that can take 16 states.
As can be seen from the description, in the normal work cycle of the automaton only 11
states were used, and the remaining 5 are unused. The correct logical synthesis of the VHDL

description will be possible only when the next states after the occurrence of one of the states

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 4

outside the normal cycle are explicitly defined, which can be done in the simplest way with

the command when others => state <= SO;.

e Implementation of a state machine with a button as the clock source

Launch ISE Design Suite 14.7 from the desktop shortcut or from Start — Programs
— Xilinx Design Tools — 64-bit Project Navigator. If there are any projects open, close
them all by selecting File — Close Project. Next, create a new project named u_d_cnt and
add the source files from the tutorial: u_d cnt.vhd and u_d_cnt.ucf.
Then synthesize the project and try to generate a * bit (bitstream) configuration file.
When trying to implement the project in the target system, an error will occur that will

prevent the bitstream file from being generated..

®ERROR:Place:1018 - A clock IOB / clock component pair have been found that are not placed at an optimal clock IOB /
clock site pair. The clock component <clk BUFGP/BUFG> is placed at site <BUFGMUX X2Y1>. The IO component <clk> is
placed at site <IPAD65>». This will not allow the use of the fast path between the I0 and the Clock buffer. If this
sub optimal condition is acceptable for this design, you may use the CLOCK DEDICATED ROUTE constraint in the .ucf
file to demote this message to a WARNING and allow your design to continue. However, the use of this override is
highly discouraged as it may lead to very poor timing results. It is recommended that this error condition be
corrected in the design. A list of all the COMP.PINs used in this clock placement rule is listed below. These
examples can be used directly in the .ucf file to override this clock rule.
< NET "clk" CLOCK DEDICATED ROUTE = FALSE; >

This is because the button is not connected to the GCLK global clock line, which the program
will detect during implementation. Therefore, in the * ucf file, a fragment code should be
added that will skip checking this rule for the clk line.

NET "clk" LOC = P80 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW

NET "clk" CLOCK _DEDICATED ROUTE = FALSE;

The fragment that should be added to the description of the clock line has been marked in

green. After such a procedure, instead of an error during implementation, only a warning

will appear.

LWARNING:Place:1019 - A clock IOB / clock component pair have been found that are not placed at an optimal clock IOB /
clock site pair. The clock component <clk_BUFGP/BUFG> is placed at site <BUFGMUX_X2Y1>. The IO component <clk> is
placed at site <IPAD65>. This will not allow the use of the fast path between the IO and the Clock buffer. This is
normally an ERROR but the CLOCK_DEDICATED_ ROUTE constraint was applied on COMP.PIN <clk.PAD> allowing your design to
continue. This constraint disables all clock placer rules related to the specified COMP.PIN. The use of this override

is highly discouraged as it may lead to very poor timing results. It is recommended that this error condition be
corrected in the design.

Please note that for fast clocks we only use dedicated lines, i.e. GCLK.

After generating the u d cnt.bit configuration file, you must program the target
system using the ElbertV2Config application, selecting the appropriate COM serial port
beforehand.

When testing the project on the Elbert V2 board, keep in mind that the SW1 - SW3
buttons short the FPGA input pins to ground. By default, they have a logical 1 state (internal
pull-up resistors are on).

You may notice that pressing SW1 often jumps several states forward. This is caused

by vibration of the mechanical contacts. So we will convert our project to a form in which

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page |5

the source of the clock signal will be a crystal oscillator on a printed circuit board. Its
fundamental frequency will be divided so as to obtain a clock with a frequency of 1 Hz inside

the architecture.

o Implementation of a state machine with a crystal oscillator as the clock source

Inside the architecture, before the begin keyword, we define an additional signal
called clk 1Hz.
signal clk 1Hz : std logic := '9';
In the previous architecture description, we change the clk clock to clk 1Hz in the sensitivity
list.
process (clk _1Hz, res)
At the beginning of the architecture description (after the begin keyword), we add a process
in which we only specify the c/k signal in the sensitivity list. The task of this process will be
to generate a clock with a frequency of 1 Hz.

process(clk)
variable counter : integer:=0;
begin
if rising_edge(clk) then
if counter < 6000000 then

counter := counter+l;
else
counter := 0;
clk_1Hz <= not clk_1Hz;
end if;
end if;

end process;

In the constraints file (*.ucf) the line responsible for the clk clock should be changed. This
time we indicate the FPGA pin connected to the 12 MHz crystal oscillator. We also remove
the line that ignores pin type checking.

NET "clk" LOC = P129 | IOSTANDARD = LVCMOS33 | PERIOD = 12MHz;

The functions of the SW2 and SW3 buttons remain unchanged.

In case of problems with errors resulting from editing the original project, use the source
files named u_d cnt clk 1Hz that are included with the manual.

The ElbertV2Config program, which is used to configure the FPGA, works with
various types of files generated by the Webpack ISE. So far, we've only used bit files. We
will modify the WebPack settings so that it is possible to generate bin files in addition to bit
files. In the Processes window, right-click on the Generate Programming File option, and

then select the Process Properties... option from the drop-down context menu.

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 6

Processes: u_d_cnt - a

L Design Summary/Reports
Design Utilities

User Constraints
Synthesize - X5T
Implement Design

N
L4 4

&
-
[

®

Rerun All
24| Stop
View Text Report
Force Process Up-to-Date

Sart E3 Des Implement Top Module

ole Design Goals & Strategies...
ommand Lin

©8 Process Properties...

In the dialog box that appears, select the Create Binary Configuration File option.

BN Process Properties - General Options x

Category Switch Name Property Name Value

—W -d Run Design Rules Checker (DRC) M
- Configuration Options . -
_ Startup Options " Create Bit File M
- Readback Options -g Binary: Create Binary Configuration File ¥
" Suspend/Wake Options -b Create ASCII Configuration File N
-g IEEE1532: Create IEEE 1532 Configuration File [|Default: Unchecked
-g Compress Enable BitStream Compression |
-g DebugBitstream: Enable Debugging of Serial Mode BitStream []
-g CRC: Enable Cyclic Redundancy Checking (CRC)

Property display level: |Standard || [] Display switch names Default

o] oo [|

After confirming the changes, we generate the files for programming the FPGA again. In the

ElbertV2Config, this time we indicate the *bin file and program (configure) the target

system.

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 7

In the presented example, the state machine was defined using the state signal and
constants named S0, S2, S4, S6, S8, S10, S11, S12, S13, S15 and S15 with defined values.
You can achieve the same effect by defining a new variable type with its values explicitly

listed. In addition to numbers, these values can also be strings.

2. State machine based on defined type with enumarated values.

We define a signal and assign a new data type to it as follows:
type STATE_TYPE is (s@, s2, s4, s6, s8, s10, sll, sl12, s13, sl14, sl15);
signal state : STATE_TYPE;

Each state of the state signal must be assigned an appropriate value at the output q.
For this purpose, we will use an additional process whose sensitivity list will only include
the state signal. The processes responsible for the state machine are presented in the
following listings.

process (clk_1Hz, res) begin
if res = '0' then state <= SO;
elsif rising edge(clk_1Hz) then
if u_d = "1' then
case state is
when SO => state <= S2;
when S2 => state <= S4;
when S4 => state <= S6;
when S6 => state <= S8;
when S8 => state <= 510;
when S10 => state <= S11;
when S11 => state <= S12;
when S12 => state <= S13;
when S13 => state <= S14;
when S14 => state <= S15;
when others => state <= S@;
end case;
elsif u_d = '0' then
case state is
when S@ => state <= S15;
when S2 => state <= SO;
when S4 => state <= S2;
when S6 => state <= S4;
when S8 => state <= S6;
when S10 => state <= S8;
when S11 => state <= S10;
when S12 => state <= S11;
when S13 => state <= S12;
when S14 => state <= S13;
when S15 => state <= S14;
when others => state <= SO;
end case;
end if;
end if;
end process;

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 8

process (state)

begin
case state is
when S@ => q <= "0000";
when S2 => q <= "0010";
when S4 => q <= "0100";
when S6 => q <= "0110";
when S8 => q <= "1000";
when S10 => q <= "1010";
when S11 => q <= "1011";
when S12 => q <= "1100";
when S13 => g <= "1101";
when S14 => q <= "1110";

when S15 => q <= "1111";
when others => q <= "0000";
end case;
end process;

An important feature of the VHDL language and its interpreters is that line breaks do
not affect its interpretation and synthesis. For example, writing when SO => q <= "0000"; is
interpreted in the same way as:
when SO =>

q <= "0000";
After synthesizing the project and generating the configuration file, it is necessary to check

the correctness of its operation..

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page |9

Il. Shift register

Shift registers are used to store and move data in digital systems, or to convert data
from serial to parallel and vice versa. They are created by means of series-connected flip-
flops, most often type D. The length of the register in bits corresponds to the number of flip-

flops in this register.

e Implementation of a 4-bit shift register with serial and parallel output.

An example 4-bit shift register with serial input and parallel output is shown in the figure
below.

4-bit Parallel Data Output

Qs Qg Qc Qo
T ‘ T j
?:%ﬁzzD Q4D Q !-—D Qf—4|D Q
Seria
hounll FFB FFC FFD
—CLK —CLK —CLK —CLK
CLR CLR CLR CLR
Clear L l l
Clock | 7]

If we wanted to use such a shift register as SISO (with serial input and serial output), then
the output of the register would be the output of the last flip-flop, i.e. QD.
An example of a shift register implementation is presented in the following code

snippet in VHDL.
process (clk_1Hz)
begin
if (clk_1Hz'event and clk_1Hz = '1') then
s_reg(2 downto @) <= s_reg(3 downto 1);
s_reg(3) <= din;
end if;
end process;

On each rising edge of the clk 1Hz clock, the 3 oldest bits are shifted 1 position to
the right (s_reg(2 downto @) <= s_reg(3 downto 1)) with the simultaneous assignment of
the bit from the din input to the highest bit in the register. Instruction led <= s_reg assigns
of states from the parallel register output to the output pins of the FPGA connected to the
LEDs (D5 to DS8). Instruction q <= s_reg(0) assigns the serial output of the register to
the LED (D1). The source code files shift reg.vhd and shift reg.ucf are provided with the

tutorial.

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 10

TASKS:

1. Create test vectors for the shift register design, then simulate its operation using the

ISim tool in ISE Webpack.

2. Based on the examples you worked through in this exercise, create a shift register

design that will operate as a state machine.

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 11

References

e P. Zbysinski, J. Pasierbinski — Ukfady programowalne — pierwsze kroki. Wydawnictwo
BTC, Warszawa 2004

e J. Majewski, P. Zbysinski — Uklady FPGA w przyktadach. Wydawnictwo BTC, Legionowo
2007.

e Electronics Tutorial — Sequential Logic: The Shift Register
https://www.electronics-tutorials.ws/sequential/seq 5.html

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 12

