ENGINI

Teaching online electronics, microcontrollers and
programming in Higher Education

Hardware Implementation of Algorithms

4.BCD to seven-segment display decoder.
Counters.

Lead Partner: Warsaw University of Technology
Autor: Lukasz Mik

University of Applied Sciences in Tarnow

Erasmus+ GRANT NUMBER: 2020-1-PL01-KA226-HE-095653

Declaration

This laboratory instruction has been prepared in the context of the ENGINE project. Where other
published and unpublished source materials have been used, these have been acknowledged.

Copyright
© Copyright 2021 - 2023 the ENGINE Consortium
Warsaw University of Technology (Poland)
International Hellenic University (IHU) (Greece)
European Lab for Educational Technology- EDUMOTIVA (Greece)
University of Padova (Italy)

University of Applied Sciences in Tarnow (Poland)

All rights reserved.

ol

This document is licensed to the public under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.

Funding Disclaimer

This project has been funded with support from the European Commission. This report reflects the
views only of the author, and the Commission cannot be held responsible for any use which may be
made of the information contained therein.

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 2

I. BCD code and seven segment display

The BCD (Binary-Coded Decimal) code is a method of writing a number consisting
in encoding successive decimal digits of this numer in a binary system. Only four bits (half-
byte) are used for this purpose. Due to the way numbers are represented in digital systems,
it is widely used in electronics and computer science. This notation allows you to easily

convert a decimal number to binary and vice versa.

Digit BCD

) 0000
0001
0010
0011
0100
9101
0110
0111
1000
1001

W 0 N O 1 A~ W N

The BCD code is most often used in electronic devices with a digital display (e.g. calculators,
digital meters).

A seven-segment display is a type of display consisting of 7 luminous elements
(segments), arranged in a shape that allows the display of all decimal digits from 0 to 9.

Lighting elements are most often LED diodes (see the figure below).

Segment designations of a single seven-segment display

The segments are labeled A through G clockwise, starting with the highest one. An
additional 8th segment called DP is used to mark a decimal point in a number with

a fractional part.

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 3

Il. BCD to seven-segment display decoder.

Direct connection of 4 lines with BCD code to a 7-segment display is not possible.
It is necessary to use a special decoder that will convert the 4-bit string given at its input to
the 7-bit string generated at its output. A simplified connection diagram of the decoder with

the display is shown in the figure below.

Bo —

Decoder

Bi — | BCD to 7 segm
B.
B3

Mmoo ®>»

Simplified decoder and display connection diagram

The Numato Elbert v2 evaluation board has three 7-segment displays that share the
same FPGA port lines.

SEVEN SEGMENT DISPLAY VECAUX

2INR
75eq_[0...7) D—) S30R J

7Seq_0 Z%:::}ﬁ

7Seq 1 |5 — 4
| I—|

7Seq_2 _S_D_u_z i . D
7Seq 3 1 — 2 D a7Seg_ten
7Seq 4 [7 — 8 . VCCAUX
L 7SEGMENTS

\ W7

75eq.5 516

7Seq_ 6 3 —1 4
VCCAUX
\ J,JFGMFN',', H

AFF3

HNL‘U\‘J

o "man oo

o

.
=)

R28

7Seq_7 41— 2

= N & o |~

o

s
=]

o "o oan oo

o [N (F (o [~

o "man oo

=
(=S

|
[e

7SEGMENTS

Fragment of a diagram showing section 3 of 7-segment displays

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 4

As can be seen in the figure above, all displays are of the common anode type.
Therefore, to light each of the segments from a to g, it is necessary to short these pins to
ground (set 0 logic state on FPGA pin). The bases of Q2, Q3 and Q4 are connected to the
FPGA pins and marked as en (enable) lines. The active display is selected by applying a
logic 0 to the base of one of the transistors. The resistor ladder R27, R28 is used to limit the
current flowing through the LEDs in the seven-segment display as well as the output port of
the FPGA.

From the FPGA side, the display lines have been connected to pins 110 to 117. The
enable lines have been connected to pins 120, 121 and 124. The manufacturer on the product

page provides an appropriate file with definitions of port names along with assigned pin

numbers.
il VCCAUX VCCINIT
(=) \Vs] QM) ™|
] =1 e B b 8 R =T ag SR P P
™S 1 ™S 0O wWd NN MM XXXX EEEte
100 107 oo 0o 0O oo oD Z2ZZZ
™ 3 100 oD OO0 Ob 00 S333 88EE
TD:(WTD‘ == 2R B 2= @uo0 S e
e — IN_L13P_3 %x
, I | F
¢pDONE 73 | e N_LI3N_3/VREF 3 IS8 o0
PROGB 144 s 10_L12P_3
PROGB 4 PROG_B R GPI0L
SUSPEND 78 | 5SPEND R D GPIO2
IP7 142 115 0 I0_L11N_3 ;g GPI03
11 1167 01N 0 e T b
10_LO1P_0 B0 F Shioe
10_LO2N_0 I0_LAAF.3 5e g::gg
I0_LO2P_0/VREF_O I0_LOIN.3 9§ GPI0B
B - 10_L08P_3/TRDY2 /LHCLK6 |—
= x I0_LOBN_3/LHCLK7 |21 GPlOS
10_LO3P_0 10 LO7P 3 /LHCLKL |18 GPI010
I0_LO4N_O ¥ E s 20 GPI011
75eg_[0...7] 3 I0_LO7N_3/LHCLK5
10_LO4P_0 ~ 15 GP1012
e 121 I0_LO6P_3/LHCLK2
eg_2en I0_LO5N_O A c 16 GPI013
o5 120 I0_LO6N_3,/IRDY2/LHCLK3
eg_len |10_LO5P_0 1 12 GPI014
P4 126 | 10 [0EN O /GCLKS 10_LO5P_3/LHCLKO
154 | 10-LO6N.0/ 10_LOSN_3/LHCLK1 |13 GPI015
7Seg_3en 10_LOBP_0/GCLKA o 10 GPID16
#3127 | |07 (07N 0/GCLKT 10_LO4P_3
o 15 | 19-LO/N_0/GC 10_LO&N_3/VREF_3 | 1L G017
Pi_——125110_L07P_0/GCLK6 g GPID18
P 331110 LOBN 0/GCLK9 e | GPI019
mekp- MK 129 §57| 08P 0,/GCLKS G Toop 3 3 GPI020
GPI031____ 132 | 107 09N 0/GCLK11 S | I rBIno1

Fragment of the diagram showing the connection of the 7-segment display line to the FPGA

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page |5

lll. Implementation of the BCDto7SEG decoder in
VHDL.

To support displays connected to the Spartan3A chip on the Elbert board, the
following ports need to be defined:
e 4 — bit input port called BCD, which we will physically connect to DIP
switches.
e 8 — bit output port called SSEG, which we will connect to the appropriate
segments of the display (we include the DP dot as 8 bit)

e 3 —Dbit output port called EN, responsible for selecting the active display.

The header part (declaration of used libraries) together with the declaration of the
design unit will look like this:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity bcdto7seg is
port

(
BCD: in std_logic_vector(3 downto 0);

SSEG: out std_logic_vector(7 downto 9);
EN : out std_logic_vector(l downto 9);

)
end bcdto7seg;

The description of the architecture should take into account all states on the BCD
input and assign the appropriate states on the SSEG output. If we want to display digits on
one of the displays, then it is enough to clear one bit of the EN vector. The architecture
description template is presented below. Please note that the display is of the common anode
type, therefore the active state at the input of each segment is logical 0. The DIP switch that
is connected to the BCD port of our decoder also works in reverse logic, so in the architecture
we will use the auxiliary signal BCD temp, by means of which we will negate the bits from

the BCD input.

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 6

architecture Behavioral of bcdto7seg is

signal BCD_temp
begin

EN <= "110";
BCD_temp <= not BCD;
process(BCD_temp)
begin

std_logic_vector(3 downto 9);

case BCD_temp is

end case;

end process;

end Behavioral;

"0000"=>SSEG<="00000011";
"0001"=>SSEG<="10011111";
"0010"=>SSEG<="00100101";
"0011"=>SSEG<="00001101";
"0100"=>SSEG<="10011001";
"0101"=>SSEG<="01001001";
"0110"=>SSEG<="01000001";
"0111"=>SSEG<="00011111";
"1000"=>SSEG<="00000001";
"1001"=>SSEG<="00001001";
others=>SSEG<="11111111";

To create a decoder project, it is still necessary to generate a UCF file, which will

contain connections of the ports of the bedto7seg design unit to the physical pins of the

system. Note that each bit of an input or output vector must be assigned separately. The

contents of the UCF file are shown below.

NET
NET
NET
NET

NET
NET
NET
NET
NET
NET
NET
NET

NET
NET
NET

"BCD[O]"
"BCD[1]"
"BCD[2]"
"BCD[3]"

"SSEG[7]"
"SSEG[6]"
"SSEG[5]"
"SSEG[4]"
"SSEG[3]"
"SSEG[2]"
"SSEG[1]"
"SSEG[@]"

"EN[2]"
"EN[1]"
"EN[0]"

LocC
LoC
LocC
LocC

Loc
LocC
LocC
LocC
LoC
LoC
LoC
LoC

LoC =
LoC =
LoC =

P70
P69
P68
P64

= P117
= P116
= P115
= P113
= P112
= P111
= P110
= P114

P124 | IOSTANDARD

PULLUP | IOSTANDARD =
PULLUP | IOSTANDARD =
PULLUP | IOSTANDARD =
PULLUP | IOSTANDARD =
TOSTANDARD LVCMOS33
IOSTANDARD LVCMOS33
IOSTANDARD LVCMOS33
IOSTANDARD LVCMOS33
IOSTANDARD LVCMOS33
IOSTANDARD LVCMOS33
TIOSTANDARD LVCMOS33
TIOSTANDARD LVCMOS33

P121 | IOSTANDARD =

P120

In ISE WebPack, follow these steps:

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653

create a new project,

select a destination chip,

LVCMOS33 | DRIVE
LVCMOS33 | DRIVE =
| TOSTANDARD = LVCMOS33 | DRIVE =

create a new source file (VHDL module)

LVCMOS33
LVCMOS33
LVCMOS33
LVCMOS33

| SLEW =
| SLEW =
| SLEW =
| SLEW =
| SLEW =
| SLEW =
| SLEW =
| SLEW =

o
oo 00

| SLEW
| SLEW
| SLEW
| SLEW

SLOW |
SLOW |
SLOW |
SLOW |
SLOW |
SLOW |
SLOW |
SLOW |

| SLEW
| SLEW

= SLOW
= SLOW
= SLOW
= SLOW

DRIVE =
DRIVE =
DRIVE =
DRIVE =
DRIVE =
DRIVE =
DRIVE =
DRIVE =

FAST ;
= FAST ;

DRIVE
DRIVE
DRIVE
DRIVE

12;
12;
12;
12;
12;
12;
12;
12;

8 | SLEW = FAST ;

paste the design unit declaration along with a description of its architecture

12;
12;
12;
12;

Page | 7

e create a new file with the assignment of signals to pins (Implementation Constraints
File)
e Compile the project and generate the configuration file (*.bit or *.bin)

e Program the target system using the ElbertV2Config software.

After completing these steps, you should check if the project works properly. In case of

problems with compilation, please use the source files included with the exercise.

ZADANIE 1: Based on what you've learned so far in this and previous classes, try adding
support for a second display and another section of 4 DIP switches to your project.
Remember that displaying on 2 displays at the same time will require multiplexing, i.e.
a quick change of bits in the EN vector, responsible for selecting the active display. The
switching frequency must be high enough so that the human eye is not able to notice the

flickering of the diodes.

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 8

IV. Implementation of a binary counter in VHDL.

To implement counters, it is necessary to use additional libraries that allow
performing arithmetic operations on vectors interpreted as unsigned numbers.
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

In the declaration of the design unit of the counter, instead of the BCD input, we give

the input from the CLK clock

entity cntmodl@ is

port

(
CLK : in std_logic_vector(3 downto 9);
SSEG : out std_logic_vector(7 downto 0);
EN : out std_logic_vector(2 downto @)

)

end cntmodl0;

In the architecture description code, we define 2 signals: ¢lk_1Hz, which will be responsible
for generating a 1 Hz clock signal, and a counter, which will count from 0 to 9 (modulo 10

counter).

architecture Behavioral of cntmodl@ is

signal clk 1Hz : std_logic:='9';

signal counter : std_logic_vector(3 downto 0):="0000";
begin

end Behavioral;

We place 3 processes in the body of the architecture. The task of the first one will be to

generate a clock signal with a frequency of 1 Hz.

process(clk)
variable clock_cnt : integer:=0;
begin
if rising_edge(clk) then
if clock_cnt < 6000001 then
clock_cnt := clock_cnt+1;
else
clock_cnt := ©;
clk_1Hz <= not(clk_1Hz);
end if;
end if;
end process;

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page |9

The second process will be responsible for counting 1 Hz clock cycles.

process(clk _1Hz)
begin
if rising_edge(clk_1Hz) then
if counter < 10 then
counter <= counter + 1;
else
counter <= "0000";
end if;
end if;
end process;

The counter value is incremented with each rising edge of the clk 1Hz signal. After reaching
the value of 10, it is immediately reset, which is why we call it a modulo 10 counter - it

counts in the range from 0 to 9.

The task of the third process will be to display the counter status from the second process on

a seven-segment display.

process(counter)
begin
case counter is
-------------------- abcdefgp
when "0000"=>SSEG<="00000011";
when "0001"=>SSEG<="10011111";
when "0010"=>SSEG<="00100101";
when "0011"=>SSEG<="00001101";
when "0100"=>SSEG<="10011001";
when "0101"=>SSEG<="01001001";
when "0110"=>SSEG<="01000001";
when "0111"=>SSEG<="00011111";
when "1000"=>SSEG<="00000001";
when "1001"=>SSEG<="00001001";
when others=>SSEG<="11111111";
end case;
end process;

The modified UCF file will look like this:

NET "CLK" LOC = P129 | IOSTANDARD = LVCMOS33 | PERIOD = 12MHz;

IOSTANDARD = LVCMOS33
IOSTANDARD = LVCMOS33

SLEW = SLOW
SLEW = SLOW

NET "SSEG[7]" LOC = P117
NET "SSEG[6]" LOC = Pl1l6
NET "SSEG[5]" LOC = P115 TOSTANDARD = LVCMOS33 SLEW = SLOW | DRIVE = 12;
NET "SSEG[4]" LOC = P113 IOSTANDARD = LVCMOS33 SLEW = SLOW | DRIVE = 12;

] | | | DRIVE = 12;

] I I I

] I I |

] I I I
NET "SSEG[3]" LOC = P112 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;

] I I I

] I I I

] I I |

DRIVE = 12;

NET "SSEG[2]" LOC = P111 IOSTANDARD = LVCMOS33 SLEW = SLOW | DRIVE = 12;
NET "SSEG[1]" LOC = Pl11@ IOSTANDARD = LVCMOS33 SLEW = SLOW | DRIVE = 12;
NET "SSEG[@]" LOC = P114 IOSTANDARD = LVCMOS33 SLEW = SLOW | DRIVE = 12;

NET "EN[2]" LOC
NET "EN[1]" LOC
NET "EN[@]" LOC

P124 | IOSTANDARD = LVCMOS33 | DRIVE | SLEW = FAST ;
P121 | IOSTANDARD = LVCMOS33 | DRIVE = 8 | SLEW = FAST ;
P120 | IOSTANDARD = LVCMOS33 | DRIVE = 8 | SLEW = FAST ;

1]
1l
1]
(o]
1]

1
(o]

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 10

As in point 11, create a project by adding the appropriate files. After completing the source
codes, compile the project and generate the configuration file. In the event that errors occur
during compilation, use the source files provided for classes. Check if the system is working
properly, i.e. the counter is incremented every second and its value is displayed on the

7-segment display.

ZADANIE 2: Modify the project from point IV so that inside the architecture they are
2 counters modulo 10. One counting up and one counting down. Both counters are to be
incremented and decremented at a frequency of 1 Hz. Note that counter values must be

displayed on separate displays.

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 11

References

o P. Zbysinski, J. Pasierbinski — Ukfady programowalne — pierwsze kroki. Wydawnictwo
BTC, Warszawa 2004

e Elbert V2 S3A FPGA Development Board, https://numato.com/product/elbert-v2-
spartan-3a-fpga-development-board/

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 12

