ENGINI

Teaching online electronics, microcontrollers and
programming in Higher Education

Hardware Implementation of Algorithms

6. Pseudorandom number generation using LFSR.

Lead Partner: Warsaw University of Technology
Autor: Lukasz Mik

University of Applied Sciences in Tarnow

Erasmus+ GRANT NUMBER: 2020-1-PL01-KA226-HE-095653

Declaration

This laboratory instruction has been prepared in the context of the ENGINE project. Where other
published and unpublished source materials have been used, these have been acknowledged.

Copyright
© Copyright 2021 - 2023 the ENGINE Consortium
Warsaw University of Technology (Poland)
International Hellenic University (IHU) (Greece)
European Lab for Educational Technology- EDUMOTIVA (Greece)
University of Padova (Italy)

University of Applied Sciences in Tarnow (Poland)

All rights reserved.

ol

This document is licensed to the public under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.

Funding Disclaimer

This project has been funded with support from the European Commission. This report reflects the
views only of the author, and the Commission cannot be held responsible for any use which may be
made of the information contained therein.

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 2

I. LFSR -theoretical background.

The LFSR is a linear feedback shift register whose input bit is a linear function of
the previous state. To implement such feedback, an XOR gate is most often used, whose
inputs are connected to selected register outputs, and the gate output to its input. The initial
value of the LFSR is called the seed, and since the operation of the register is deterministic,
the stream of values generated by the register is completely determined by its current (or
previous) state. Due to the fact that the LFSR register has a finite number of states, after
passing through all of them, it returns to its initial state and the cycle repeats again. However,
an LFSR with a well-chosen feedback function can produce a sequence of bits that appears
random and that has a very long cycle without repetition. Typical applications of LFSR
counters include generators of: pseudo-random numbers, white noise, bit pseudo-random
sequences. The hardware and software implementations of the LFSR are the same. An

example of a 16-bit LFSR is shown in the figure below.

1 11 1314 16

Eq=q

The bits that affect the next state are called taps. In this case, the taps are derived

from bits 16, 14, 13, and 11. The rightmost LFSR bit is the output bit. The bits from the shift

register taps are XORed with the output bit, and then fed back to the leftmost bit. For a
register of length n bits, the number of all possible sequences of bits, and thus pseudo-
random numbers, is 2"-1. The feedback tap system in the LFSR can be expressed in finite
field arithmetic as a mod 2 polynomial. This means that the coefficients of the polynomial
must be either 1 or 0. This is called the feedback polynomial or inverse characteristic
polynomial. For example, if the taps are on 16, 14, 13, and 11 bits (as shown in the figure),

the feedback polynomial is:

$16 -|—$14—|-£E13 —|—$11—|-].

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 3

The "one" in the polynomial does not correspond to The powers of the terms represent the
selected bits, counting from the left. The first and last bits are always connected as input and
output taps respectively. The LFSR can reach its maximum length if and only if the
corresponding feedback polynomial is a primary polynomial the tap - it corresponds to the
input to the first bit (i.e. x°, which corresponds to 1). The powers of the x represent the
selected bits, counting from the left. The first and last bits are always connected as input and
output taps respectively. The LFSR can reach its maximum length if and only if the
corresponding feedback polynomial is a primary polynomial. An example code for

implementing a 16-bit LFSR in C is shown in the listing below.

#include <stdint.h>
unsigned 1lfsr_fib(void)

{
uintlé_t start_state = OxACElu; //Any nonzero start state will work
uintlée_t bit; //Must be 16-bit to allow bit<<15 later in the code
unsigned period = 0;
do
{ // taps: 16 14 13 11;
//feedback polynomial: x"16 + x"14 + x*13 + x*11 + 1
bit = ((1fsr >> @) ~ (1fsr >> 2) ~ (1fsr >> 3) ~ (1fsr >> 5)) & 1u;
1fsr = (1fsr >> 1) | (bit << 15);
++period;
}
while (1lfsr != start_state);
return period;
}

LFSR counters have simpler feedback logic than natural binary or gray code counters
and can therefore operate at higher clock rates. However, you must ensure that the LFSR
never goes to zero, for example by setting it at startup to any other state in the sequence. The
primitive polynomial table (Xilinx XAPP 052) shows how the LFSR can be arranged in
Fibonacci or Galois form to obtain maximum sequence generation periods without
repetition. Any other period can be obtained by adding to the LFSR, which has a longer
period, some logic that shortens the sequence by omitting some states.

LFSR output streams are deterministic. If the current state and positions of the XOR
gates in the LFSR are known, the next state can be predicted. This is not possible for truly
random events. For a maximum-length LFSR, it is much easier to compute the next state

because there are only a limited number of them for each length.

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 4

ll. Pseudorandom number generation using
LFSR.

As written earlier, a register of length n can generate a pseudo-random string with
a maximum length of 2n-1. The binary codes at the output of the counter constructed in this
way, after D/A conversion, generate noise with a uniform distribution.

During the course, we will first implement a pseudorandom number generator, built
of a 4-bit shift register and a very low-order polynomial. Such a generator will be able to
generate 15 different sequences of bits (numbers). When the generator register reaches state
15, the sequence repeats. Note that the LFSR is a one-bit random generator - the binary string
is taken from its output. If we want to check the states on each of the taps, then each tap must
be derived in the form of a vector of bits. In VHDL, this can be done by setting the port to

inout mode. For a 4-bit register, the primary polynomial has the following form: x* + x2 + 1
A practical implementation of a pseudo-random number generator in VHDL

STEP 1: Create a project called Ifsr4bit in ISE Webpack. Remember about
the appropriate parameters of the target FPGA

STEP 2: Inside the project, create a new VHDL source file called Ifsr4bit. In the
header part of this file, import the necessary libraries and define the I/O ports

of the project unit.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity lfsr4bit is
port (
rst : in std_logic;
clk : in std_logic;
rand : out std_logic_vector(3 downto @) -- LFSR
)
end entity;

STEP 3: Then, in the description of the architecture, add the process in which the linear
feedback shift register will be implemented.

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page |5

architecture Behavioral of lfsr4bit is

signal 1lfsr : std_logic_vector (3 downto @); -- LFSR register
signal feedback : std_logic; -- LFSR feedback
begin

feedback <= not(lfsr(3) xor 1lfsr(2));-- feedback by polynomial x"3+x"2+1

1fsr_pr : process (clk)
begin
if (rising_edge(clk)) then
if (rst = '@') then
1fsr <= (others=>'0");

else
1fsr <= 1fsr(2 downto ©) & feedback;
end if;
end if;
end process lfsr_pr;
rand <= 1lfsr; -- parallel output of LFSR

end architecture;

STEP 4: Now you need to bind the I/O ports from the unit declaration to the FPGA pins.
For this purpose, create a UCF file (Implementation Constraints File option)
and add the code binding the ports with the pins of the system in it.

#clock

NET "clk" LOC

#reset
NET "rst" LOC = P80 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;

P129 | IOSTANDARD = LVCMOS33 | PERIOD = 12MHz;

#LFSR parallel output on 4 LEDs

NET "rand[@]" LOC = P46 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
NET "rand[1]" LOC = P47 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
NET "rand[2]" LOC = P48 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
NET "rand[3]" LOC = P49 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;

After completing the source files, you can perform a synthesis of the project to check
for any syntactic or formal errors in the VHDL language. The tool will also check whether

the description prepared by us is synthesizable to digital form.

STEP 5: In the next step, we will simulate the project. So we create a new file called
Ifsr4bit_tb selecting the VHDL Test Bench option when creating. In the

editing window of the test program file, paste the following code.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.ALL;

entity tb_lfsr_vil is
end entity;

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 6

architecture test of tb_lfsr_vl is

constant PERIOD : time := 83 ns;--frequency ~12MHz
signal clk : std_logic := '0';

signal rst : std_logic := '0';

signal rand : std_logic_vector(3 downto 0);
signal endSim : boolean := false;

component lfsr_ vl is

port (
rst : in std_logic;
clk : in std_logic;
rand : out std_logic_vector(3 downto 0)
)
end component;
begin
clk <= not clk after PERIOD/2;

rst <= '1" after PERIOD*2;
endSim <= true after PERIOD*60;

-- End the simulation
process
begin
if (endSim) then
assert false
report "End of simulation."
severity failure;
end if;
wait until (clk = '1');
end process;

1fsr_inst : 1fsr_vl

port map (
clk => clk,
rst => rst,
rand => rand
)5

end architecture;
STEP 6: Generate a behavioral simulation model (Post-Synthesis).

Processes: [fsrdbit - Behavioral

= Design Summary/Reports
Design Utilities
User Constraints
P20 Synthesize - ¥5T
View RTL Schematic

View Technelogy Schematic
P2 Check Syntax
{Generate Post-Synthesis Simulation Model
P20) Implement Design
P2) Generate Programming File

- G#-&#

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653

Page | 7

STEP 7: In the project window, change the view to the simulation view, and select the

Behavioral option from the drop-down menu.

Design —+0F X
view: () I’!‘:é} Implementation (@) @ Simulation

L[EJ Behavioral R

Hzl Hierarchy

— = Ifsrdbit

=1 B xc3s30a-dtql14d

g Ifsr_inst - srdbit - Behavioral (Ifsrdbit.vhd)

STEP 8: In the processes window, double-click on the Simulate Behavioral Mode
option, after which the iSim simulator window will open. In the horizontal
toolbar, in the place where we specify the end time of the simulation, enter
Sus. Adjust the contents of the simulator window with the Zoom options

to display the fragment of time waveforms we are interested in.

O BA

W =
W =@
1 m
1 @
-”—.- endsim

1% period

STEP 9: In order to be able to track changes of states on the output of the LFSR using
LEDs, it is necessary to reduce the clock frequency of the register. For this
purpose, we introduce an additional signal inside the architecture called
clk_1Hz, which will be responsible for generating a clock signal with
a frequency of 1Hz. After introducing corrections in the code, the description
of the architecture should take the form as in the code fragment presented

below.

architecture Behavioral of lfsr4bit is

signal 1lfsr : std_logic vector (3 downto @); -- LFSR register
signal feedback : std_logic; -- LFSR feedback
signal clk_1Hz : std_logic;

begin

feedback <= not(lfsr(3) xor 1lfsr(2));-- feedback by polynomial x"3+x"2+1

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 8

process(clk)
variable counter : integer:=0;
begin
if (rising_edge(clk)) then
if (counter>6000000) then
counter:=0;
clk_1Hz <= not clk_1Hz;
else
counter:=counter+l;
end if;
end if;
end process;

1fsr_pr : process (clk_1Hz)
begin
if (rising edge(clk_1Hz)) then
if (rst = '0') then
1fsr <= (others=>'0");
else
1fsr <= 1fsr(2 downto 0) & feedback;
end if;
end if;
end process 1lfsr_pr;
rand <= 1fsr; -- parallel output of LFSR

end architecture;

STEP 10: After compiling the project and generating the configuration file, the target
system should be programmed and the correct operation of the generator

should be checked.
ZADANIE: Using the example discussed in the lesson, design a pseudo-random number

generator with an 8-bit LFSR register. Feedback is to be implemented using

a polynomial: x8 + x8 + x> + x* +1

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page |9

References

o User manual for Elbert V2 - Spartan 34 FPGA Development Board.
https://numato.com/docs/elbert-v2-spartan-3a-fpga-development-board/

e Psecudo random generation Tutorial - https:/fpgaer.tech/?7p=51

e Xilinx iSim User Guide - UG660 (v14.1)
https://www .xilinx.com/content/dam/xilinx/support/documents/sw manuals/xilinx14 1/plugin

_ism.pdf

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 10

