ENGINI

Teaching online electronics, microcontrollers and
programming in Higher Education

Hardware Implementation of Algorithms

7.Incremental encoder.

Lead Partner: Warsaw University of Technology
Autor: Lukasz Mik

University of Applied Sciences in Tarnow

Erasmus+ GRANT NUMBER: 2020-1-PL01-KA226-HE-095653

Declaration

This laboratory instruction has been prepared in the context of the ENGINE project. Where other
published and unpublished source materials have been used, these have been acknowledged.

Copyright
© Copyright 2021 - 2023 the ENGINE Consortium
Warsaw University of Technology (Poland)
International Hellenic University (IHU) (Greece)
European Lab for Educational Technology- EDUMOTIVA (Greece)
University of Padova (Italy)

University of Applied Sciences in Tarnow (Poland)

All rights reserved.

ol

This document is licensed to the public under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.

Funding Disclaimer

This project has been funded with support from the European Commission. This report reflects the
views only of the author, and the Commission cannot be held responsible for any use which may be
made of the information contained therein.

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 2

. Incremental encoder - principle of
operation.

The incremental rotary encoder module by Keyes with the symbol KY-040 or
alternatively HW-040 will be used for this exercise. Pull-up resistors for the A and B lines
of the encoder are already provided in this module.

The rotary encoder is an element that allows you to read the position of the shaft rotation (in
this case, the knob) and the direction of its rotation. It has a strictly defined number of

positions per full turn of the knob. The encoder itself has 3 leads: A, B and C.

=

l;.ﬂ]‘ ,'.:I.‘

A C B

On pins A and B, pulses are generated when the knob is rotated. These pulses are out
of phase with each other, which makes it possible to determine the direction of rotation. Pin

C is a common ground for both A and B signals, which are generated by switches.

CW Rotation —»

<@— CCW Rotation

I I I I I | o
Ato C]] 1 I [| [1 Open
Switch I I I I I I o Closed

I I I I I I (I

I I I I I I (-

I I I I I I (I
B to C _J [! [[1 [T 1! Open
Switch I J I I I J I | I Closed

I 1 I 1 1 1 1 1

c & £ 8 £ B8 £ o

g 8 g8 & g8 & g 8

(@] Q o [&] o Q (@] [&]

£ £ £ £ £ £ £ £

Qo [=] [=] o o [=] [=] [=]

o om o om o o om o

When the knob is turned clockwise, it causes the output of switch A (pins A and C) to be
earlier than the output of switch B (pins B and C). The rotation speed also affects the

frequency of the pulses. The diagram of the encoder module is shown in the figure below.

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page |3

Encoder O oT

GND
F —_— N A
R2
N—eANN—9
ra | R2,R3=10kohm
A'A

The module has been designed in such a way that when the A or B contacts are shorted, 0V
voltage appears on their outputs, and in the case of opening - the supply voltage thanks to
pull-up resistors with a resistance of 10 kOhm. The description of the pins on the module

looks like this:

-~

Groun) fvcc

In order to adapt the application of the encoder module to the FPGA, connect the supply
voltage to the + and GND pins. CLK (A) and DT (B) pins should be connected to selected
FPGA pins, available on goldpin connectors. We omit the SW pin, which is the output of
the switch, shorted when the knob is pressed.

Taking into account the inevitable impulse interference generated during closing and
opening of contacts, such a pair of signals is not suitable for use directly in other digital
circuits. Timing circuits are needed to eliminate contact jitter in FPGAs. The simplest way
to implement a timing system in an FPGA is to build a state machine clocked by an external
clock signal. It is also necessary to set such a working cycle of this automaton that will

minimize the impact of contact vibrations on the quality of decoding.

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 4

ll. Signal decoder implementation for
incremental encoder.

In modern HDL languages, including VHDL, it is possible to describe the work of
an automaton in many ways. To ensure the clarity of the description of the automaton's
operation, it has been presented in the form of a graph, the individual states of which are
explicitly predefined by the constant Sx declaration, where x identifies the state. Although
explicitly assigning values to individual states requires some work, it is easier to check the
correctness of the logical description (verification of the description), because on the basis
of the value of the state vector it is easy to determine in which state (in what place in the

graph) the automaton is at a given moment..

clk_out <= '0’'
u_d out <= '0'

if a="0"

=

if A= 'l" and B = ''and B = '1l"'
elsif A = '1l"

and B = 'l elsif A = '1'

S20 and B = '1"

if A="1" and B = 0" and B = '1

elsif A = '0'
and B "1
S3

8ifh= '0" and B = "0
r1

» u d out <=

S4
L; g’clk_cut <= '1"
S5

if A= '0"'" and B = '0'%

u d out <= '0 <

S40
clk_out <= ‘1'4—2 ‘-)
S50

Due to the principle of operation, the designed automatic unit is equipped with a reset
input (asynchronous) res - each time after switching on the power supply, a short impulse of

high level should be given to it. Hardware zeroing forces the automaton to go to the SO state,

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page |5

which is the initial state - the automaton remains in this state until the level changes on one
of the inputs: A or B. Depending on which of them the high level occurs first (which
determines the rotation direction encoder axis), the automatic unit goes to state S1 (counting

direction up) or S10 (counting direction down).
Implementation of a decoder for encoder signals in VHDL

STEP 1: In ISE Design Suite 14.7 (Webpack) create a new project called encoder, set the
appropriate parameters of the target FPGA.

STEP 2: In the project, create a new VHDL Module file called encoder. After creating it, an
editing window with the contents of the encoder.vhd file will open. First, complete the

header part with libraries.

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

STEP 3: Then declare the unit name as the project encoder along with its I/O ports.

entity encoder is

port (A : in std_logic; -- input A
B : in std_logic; -- input B
res: in std_logic; -- reset input
clk: in std_logic; -- clock input

EN : out std_logic_vector(2 downto ©); -- enable for 7-segment display
SSEG: out std_logic_vector(7 downto ©) -- 7-segment display

)5

end encoder;

STEP 4: After declaring the unit, move on to the description of the architecture. In the
declaration part of the architecture, define the constants from S0 to S5 and from S10 to S50
representing individual states from the state machine diagram presented earlier. In addition,
declare the encoder_rol signal (encoder right or left), which indicates the direction of
rotation of the encoder knob, and the encoder_clk, whose output generates rectangular
pulses in the S5 or S50 states. In addition, declare the bed_counter signal, responsible for
counting pulses from the encoder. This signal will directly drive the input of the BCD code

decoder to the seven-segment display code.

architecture arch of encoder is

signal state: std_logic_vector(3 downto 0);

constant S@ : std_logic_vector(3 downto ©):= "0000";
constant S1 : std_logic_vector(3 downto ©):= "0001";
constant S2 : std_logic_vector(3 downto ©):= "0010";
constant S3 : std_logic_vector(3 downto ©):= "0011";
constant S4 : std_logic_vector(3 downto 9):= "0100";
constant S5 : std_logic_vector(3 downto ©):= "0101";

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 6

constant S10 : std_logic_vector(3 downto 9):= "1@01";
constant S20 : std_logic_vector(3 downto 90):= "1010",;
constant S30 : std_logic_vector(3 downto ©):= "1011";
constant S40 : std_logic_vector(3 downto ©):= "1100";
constant S50 : std_logic_vector(3 downto ©0):= "1101";
signal encoder_clk : std_logic;

signal encoder_rol : std_logic;

signal clk_1kHz : std_logic:='9";
signal bcd_counter : std_logic_vector(3 downto 0):="0000";

STEP 5: In the architecture description, the first process is responsible for handling signals
from the encoder. It starts with the handling of the reset signal - return to the zero state, as
well as the handling of the transition from the SO to S1 state (turning the encoder 1 tact to

the right) or from the state SO to S10 (turning the encoder 1 tact to the left).

BEGIN
process (clk_1kHz, res)
begin

if res = '0' then

state <= "0000";
elsif clk_1kHz'event and clk_1kHz = '1"' then
case state is
when S@ =>
encoder_clk <= '0"'
encoder_rol <= '0'
if A= "'1" and B = '9' then
state <= S1;
elsif A = '9' and B = '1' then
state <= S10;
else state <= SO;
end if;

3
3

STEP 6: If there was a change from SO to S1, then go to the path of the state machine
responsible for detecting rotational movement to the right ("increase"). This path of the state
machine is also started on every cycle (combination) of signals A and B for the direction of

rotation to the right (states S1 to S5).

-- path of the state machine for motion detection in the "increase" direction

when S1 =>
if A= "'1" and B = '1' then
state <= S2;
elsif A= '"1' and B = '@' then
state <= S1;
else state <= SO;
end if;
when S2 =>
if A= '0"' and B = '1' then
state <= S3;
elsif A = '1'" and B = '1' then
state <= S2;
else state <= SO;
end if;
when S3 =>

if A= '9' and B = '9@' then

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 7

state <= S4;
elsif A = '0' and B = '1' then
state <= S3;
else state <= SO;
end if;
when S4 =>
encoder_rol <= '1";
state <= S5;
when S5 =>
encoder_clk <= '1";
state <= SO;

STEP 7: If there was a change from SO to S10, we go to the path of the state machine,
responsible for detecting rotational movement to the left ("decrease"). This path of the state
machine is also started on every cycle (combination) of signals A and B for the direction of

rotation to the left (states from S10 to S50).

-- path of the state machine for motion detection in the "decrease" direction
when S10 =>
if A= "'1" and B = '"1' then
state <= S20;
elsif A = '0' and B
state <= S10;
else state <= SO;
end if;
when S20 =>
if A="'1'" and B = '9' then
state <= S30;
elsif A = '1' and B
state <= S20;
else state <= SO;
end if;
when S30 =>
if A= "'0" and B = '9@' then
state <= S40;
elsif A = '1' and B
state <= S30;
else state <= SO;
end if;
when S40 =>
encoder_rol <= '0';
state <= S50;
when S50 =>
encoder_clk <= '1"';
state <= SO;
when others =>
state <= SO;
end case;
end if;
end process;

'1l' then

'1' then

'9' then

In both paths of the state machine, if there is a different combination of signals A and B than

assumed (when changing the direction of rotation), the state returns to SO.

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 8

STEP 8: After the process that handles the encoder, add a process responsible for generating
a clock signal called clk_1kHz and frequency 1kHz. This frequency (period equal to 10 ms)

is suitable to eliminate the influence of vibration of the encoder contacts.

--clock 1RHz
process(clk)
variable clock_cnt : integer:=0;
begin
if rising_edge(clk) then
if clock_cnt < 6000 then
clock_cnt := clock_cnt+1;
else
clock_cnt := 0;
clk_1kHz <= not(clk_1kHz);
end if;
end if;
end process;

STEP 9: The next process in the architecture will be responsible for handling the counter
mod 10, clocked by the encoder_clk signal. Counting direction of the counter will be
controlled by the encoder_rol signal. If the encoder axis rotates to the left, the counter will
be incremented by 1 with each cycle of the encoder clk signal, otherwise it will be

decremented by 1.

process(encoder_clk)
begin
if rising_edge(encoder_clk) then
if bcd_counter < 10 then

if(encoder_rol = "1"') then
bcd_counter <= bcd_counter + 1; --encoder knob rotates right
else
bcd_counter <= bcd_counter - 1; --encoder knob rotates Left
end if;
else
bcd_counter <= "0000";
end if;
end if;

end process;

STEP 10: At the end of the description of the architecture, add the process responsible for
decoding the BCD code into the code of the seven-segment display. It is also necessary to

set the bits of the EN vector responsible for selecting the active display.

process(bcd_counter)
begin
case bcd_counter is

-------------------- abcdefgp
when "0000"=>SSEG<="00000011";
when "0001"=>SSEG<="10011111";
when "0010"=>SSEG<="00100101";
when "0011"=>SSEG<="00001101";
when "0100"=>SSEG<="10011001";
when "0101"=>SSEG<="01001001";

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page |9

when "0110"=>SSEG<="01000001";
when "0111"=>SSEG<="00011111";
when "1000"=>SSEG<="00000001";
when "1001"=>SSEG<="00001001";
when others=>SSEG<="11111111";
end case;
end process;
EN <= "110";
END arch;

After completing all the above steps, it remains to connect the encoder to the pins of the

FPGA. Connect the encoder to the pins of the P1 socket called GPIO HEADER P1.

[a]
7 4 8 GPIO'S
6 [i

The connection scheme is described in the table below.

Encoder pin GPIO HEADER ,,P1”
+ 3.3V
GND GND
CLK 1
DT 2

For the project to work properly, the file with the assignment of the FPGA pins to the I/O
ports of the project unit is still missing. Therefore, create a file called encoder.ucf (when
creating a new file, select the Implementation Constraints File option) and paste the

following content.

NET "A" LOC = P31 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE
NET "B" LOC = P32 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE
NET "clk" LOC = P129 | IOSTANDARD = LVCMOS33 | PERIOD = 12MHz;

NET "res" LOC = P80 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;

12;
12;

NET "SSEG[7]" LOC = P117 IOSTANDARD = LVCMOS33 SLEW = SLOW | DRIVE = 12;
NET "SSEG[6]" LOC = P116 TOSTANDARD = LVCMOS33 SLEW = SLOW | DRIVE = 12;
NET "SSEG[5]" LOC = P115 TOSTANDARD = LVCMOS33 SLEW = SLOW | DRIVE = 12;

NET "SSEG[4]" LOC = P113	IOSTANDARD = LVCMOS33

NET "SSEG[3]" LOC = P112 TOSTANDARD = LVCMOS33 SLEW = SLOW | DRIVE = 12;
NET "SSEG[2]" LOC = P111 TOSTANDARD = LVCMOS33 SLEW = SLOW | DRIVE = 12;
NET "SSEG[1]" LOC = P11@ TOSTANDARD = LVCMOS33 SLEW = SLOW | DRIVE = 12;
NET "SSEG[@]" LOC = P114 IOSTANDARD = LVCMOS33 SLEW = SLOW | DRIVE = 12;

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 10

NET "EN[2]" LOC
NET "EN[1]" LOC
NET "EN[@]" LOC

P124 | TOSTANDARD = LVCMOS33 | DRIVE = 8 | SLEW = FAST ;
P121 | IOSTANDARD = LVCMOS33 | DRIVE = 8 | SLEW = FAST ;
P120 | IOSTANDARD = LVCMOS33 | DRIVE = 8 | SLEW = FAST ;

After re-saving and synthesizing the project, generate a configuration file for the FPGA.

NOTE: Observe how many encoder ticks correspond to a single change of the counter

displayed on the display? Can you explain what is happening?

TASK: Modify the design so that the rotation of the encoder increments or decrements the

counter in the range from 0 to 99 (two seven-segment displays must be used).

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 11

References

e J. Majewski, P. Zbysinski — Uklady FPGA w przyktadach. Wydawnictwo BTC,
Legionowo 2007.

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 12

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 13

