ENGINI

Teaching online electronics, microcontrollers and
programming in Higher Education

Hardware Implementation of Algorithms

10. PicoBlaze 8-bit microcontroller.

Lead Partner: Warsaw University of Technology
Author: Lukasz Mik

University of Applied Sciences in Tarnow

Erasmus+ GRANT NUMBER: 2020-1-PL01-KA226-HE-095653

This laboratory instruction has been prepared in the context of the ENGINE project. Where other
published and unpublished source materials have been used, these have been acknowledged.

Copyright
© Copyright 2021 - 2023 the ENGINE Consortium
Warsaw University of Technology (Poland)
International Hellenic University (IHU) (Greece)
European Lab for Educational Technology- EDUMOTIVA (Greece)
University of Padova (Italy)

University of Applied Sciences in Tarnow (Poland)

All rights reserved.

ol

This document is licensed to the public under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.

Funding Disclaimer

This project has been funded with support from the European Commission. This report reflects the
views only of the author, and the Commission cannot be held responsible for any use which may be
made of the information contained therein.

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 2

What is PicoBlaze?

PicoBlaze (KCPSM3) is a very simple 8-bit microcontroller dedicated to the Spartan-

3 family, but is also suitable for Virtex-II and Virtex-IIPRO. Its main purpose is applications

requiring a complicated state machine, but not time-critical. That's why it's called the

(K)constant Coded Programmable State Machine. The figure below shows the KCPSM3

block with program memory. This is the result of compiling the microcontroller project from

source files available on the Xilinx website.

Interface to logic

Block Memory
(Program)

KCPSM3
IN_PORT[7:0] OUT_PORT[7:0]
INTERRUPT PORT_ID[7:0]
RESET READ_STROBE
—Pb CLK

ADDRESS[9:0]
CLK

INSTRUCTIONI[17:0]

INSTRUCTIONI[17:0]

WRITE_STROBE

INTERRUPT_ACK

ADDRESS[9:0]

Interface to logic

The most important feature of this microcontroller is that it is completely embedded

in the FPGA and does not require additional external circuits to operate. Inside the FPGA, it

can be connected to any other element that performs advanced logic functions. The KCPSM3

project was written in VHDL. The architecture of the microcontroller is shown in the block

diagram below.

IN_PORT[7:0]

_ 18 bit instruction word
I G bit data path
I ¢ it port address
I 10 bit program address

Constants

INSTRUCTION[17:0]

Program
ROM/RAM

RESET
CLK

1024 words

ENGINE ERASMUS+ 2020-1-PLO1-

16 Registers
8-bit

sF
sE
sD
sC
sB
SA
s9
s8

s7
s6
s5
s4
s3
52
s1
s0

Scratch Pad
Memory
64-Bytes

INTERRUPT —|
INTERRUPT_ACK #—]

Interrupt
Control

Operational
control &
Instruction
decoding

>
—
-
—

aaa/pp/ss/kk

KA226-HE-095653

pp Control

TH PORT_ID[7:0]
Address

—» READ_STROBE
—» WRITE_STROBE

OUT_PORT[7:0]

ALU

Shift
Rotate

Arithmetic
Logical

PARITY
vy

ZERO &
CARRY
flags

[P
[

Interrupt
Shadow Flags

Program
Flow
Control

ADDRESS[9:0]

Program
Counter

Program

Counter
Stack

Page |3

The KCPSM3 supports programs up to 1024 instructions long that occupy a single
block of ROM. In its architecture, you can extract 16 working registers marked from s0 to
sF, which can be assigned their names in assembly language. Each of the registers can be
used to the full extent, because the system does not have a built-in accumulator. The ALU
block is responsible for performing 8-bit arithmetic and logical operations using working
registers. Additional flags set depending on the result of arithmetic and logical operations
are Carry and Zero. The statuses of these flags can be used to control the order of instructions
to be executed within the program and subroutines. To handle subroutine jumps, a stack is
used that allows nesting up to 31 levels within subroutines. PicoBlaze can handle up to 256
input and output ports. Access to the port is done using an 8-bit address, given on PORT ID.
Reading data from the input port or sending data to the output port is done indirectly through
one of the working registers. The microcontroller also has a cache memory with a capacity
of 64B (Scratch Pad Memory), which can be used to store the contents of registers or data
from I/O ports.

The PicoBlaze microcontroller is programmed using the assembler language, the full
list of instructions of which can be found in the KCPSM3.zip archive (KCPSM3 Manual.pdf
file), available for download from the manufacturer's website. The assembler code source
file must have the PSM extension. The file with the contents of the program memory is
automatically generated by the KCPSM3.exe program - assembly language compiler. It
works only in the DOS environment, so during the classes it will be necessary to use an
emulator of this system, e.g. DOSBox. The method of compiling the source files of the

microcontroller is presented below.

<filename>.psm } Program file

passi.dat

—» Pass2dat | agsembler intermediate
pass3.dat } processing files

passd.dat | (may be useful for debugging)
passb.dat

ROM_form.vhd —»p
ROM_form. v — KCPSM3.EXE

ROM_form. coe —»

<filename>.vhd <filename>.log
ROM definition <filename>.v constant.txt } Assembler
files for a variety . report files
of design flows <filename>.coe labels.txt

<filename>.m
" Formatted version of
ROM definition files { <filename>.hex <filename>.fmt - @ input file

for other utilities <filename>.dec

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 4

Il. Download and prepare source files for the
exercise

First, we download the KCPSM3.zip archive from the Xilinx website:

https://www.xilinx.com/products/intellectual-property/picoblaze.html#design. On this page,

click on the link with the name PicoBlaze for Spartan-3, Virtex-4, Virtex-1I and Virtex-11
Pro FPGAs. You must log in to download the archive. In the absence of an account on the

site https://xilinx.com you must create them to access the files. After unpacking the files

from the archive into the KCPSM3 folder, its contents should look like this:

Assembler 04.08.2005 16:51 Folder plikow

DATAZMEM _assistance 04.08.2005 16:51 Folder plikdw

JTAG loader 04.08.2005 16:51 Folder plikow

Verilog 04.08.2005 16:51 Folder plikow

WVHDL 04.08.2005 16:50 Folder plikow
|| kepsm3.ngc 15.06.2004 13:59 Plik NGC 50 KB
@ KCPSM3_Manual 10.10.2003 16:06 Microsoft Edge PD... 609 KB
=l read_me 04.08.2005 16:56 Dokument tekstowy 22 KB
@ UART_Manual 23.04.2003 10:46 Microsoft Edge PD... 111 KB
@ UART real_time clock 07.10.2003 16&:27 Microsoft Edge PD 316 KB

The user's manual has been made available by the manufacturer in the KCPSM3 Manual.pdf
file.

In the next step, we create a directory called pico_testl in the location where we have
stored our projects so far, e.g. C:\Xilinx_ work\pico_testl. This will be the working directory
for the rest of this exercise. Copy the following files from the Assembler folder to the
pico_testl folder:

e KCPSM3.exe
e ROM form.coe
e ROM form.v
e ROM form.vhd
Then we copy the kcpsm3.vhd tile from the VHDL folder to the pico testl folder.

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page |5

lll. Implementation of a simple program in assembler

As part of the exercise, you will write a program code that will read the status of 8
DIP buttons and display these states on 8 LEDs.

In any text editor, the simple assembler code shown in the listing below:

Simple loop that puts contents of input register
into the output register

switches DSIN $00

; LEDS DSOUT $80

start: INPUT s@, 00 ; read switches into register s@

OUTPUT s@, 80 ; write contents of s@ to output port 80 - leds.
JUMP start ; loop back to start

s ve e e Lo

The program consists of an endless loop, inside which the value from the input port with the
address 00h is read into the sO register. Then the value from the s0 register is sent to the
output port with the address 80h. A semicolon is used to mark a comment in the program

code.

After editing the code, save the file as picotest.psm. Please note that the file name
cannot be longer than 8 characters. After saving the file, the contents of the pico_testl

directory should look like this:

[KCPSM3.EXE 05.07.2005 09:33 Aplikacja 89 KB
- kepsm3.wvhd 20.07.2005 08:50 Plik obrazu dysku t... 67 KB
| | picotestpsm 04.05.2023 13:46 Plik PSM 1KB
|| ROM_form.coe 25.01.2002 15:17 Plik COE 1 KB
|| ROM_form.v 04.07.2005 18:05 Plik V 15 KB
~ ROM_form.vhd (05.07.2005 09:39 Plik obrazu dysku t... 13 KB

Note: If you are using Notepad, you must change the file type from text *.txt to all *.* files

Nazwa pliku: | picotest.psm \,|

Zapisz jJako typ: |Wszystkie pliki (*.%) b

Otherwise, the program will add the extension *.txt to the name of the picotest.psm file,

which will save the file as picotest.psm.txt.

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 6

IV. Compilation of assembly code using KCPSM3.exe
compiler and DOSBox emulator

To compile the program code for the PicoBlaze microcontroller, 4 input files are
necessary: picotest.psm, ROM_form.vhd, ROM_form.v, ROM form.coe. ROM_* * files are
templates for block RAM initialization. The assembler compiler is a program that only runs
on 32-bit DOS. Windows 32-bit systems can run in command-line mode where
KCPSM3.exe can be run. When you try to run this program from a 64-bit Windows
command prompt, you will receive a message that the system is not compatible with the
32-bit version of the program.

To avoid this problem, download a 32-bit DOS emulator from the website:

http://www.dosbox.com/. After downloading, installing and running the emulator, you will

need to mount the pico_testl folder as a drive in it, using a letter not used in the system.
When DOSBox starts, a command prompt window will appear with the Z drive set by

default. So we type the command:
mount G C:\Xilinx_work\pico_testl\

If the entered drive letter G is free and the folder C: \Xilinx work\pico_testl exists, the virtual

drive G will be assigned to it.

Z:somount G C:sXilinx_workspico_testl

Drive G already mounted with local directory c:\Xilinx_workspico_testis

To navigate to the created drive, simply type G: followed by dir to display the contents of

the root directory on that drive.

04-05-2023
04-05-2023
EXE 90,308 05-07-2005

KCPSH3 UHD 67,765 Z20-07-2005
PICOTEST P3H 271 04-05-2023
[ROM_FORM COE 857 25-01-2002
ROM_FORM U 15,275 04-07-2005
[ROM_FORM UHD 12,748 05-07-2005
b File(s) 187,224 Bytes.
Z Dir(s) 262,111,744 Bytes free.

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 7

After entering the KCPSM3 picotest.psm command, the syntax in the assembler will be

checked and then the program code will be compiled to binary format. After successful

completion of the compilation process, the KCPSM3 successful message will appear.

PASS 7 — Writing coefficient file
picotest.coe

PASS 8 — Writing VHDL memory definition file
picotest.uhd

PASS 9 — Writing Verilog memory definition file
picotest.v

PASS 10 - Writing System Generator memory definition file

picotest.m
PASS 11 - Writing memory definition files
picotest.hex
picotest.dec
picotest.men

[KCPSM3 successful.

KCPSM3 complete.

If there is an error in any part of the program code, the compiler will display information

about this error.

PASS 4 - Resoluing Operands

: Simple loop that puts contents of input register
; into the output register

; switches DSIN $00
: LEDS DSDUT $80

000 start: INPUT =0, 00; read switches into register s0
001 DUTPUT d@, 80; write contents of s0 to output port 80 - leds.

[ERROR - Invalid register name: 40

Default register names are in the range 's0' to ’sF’.
Note that NAMEREG directive replaces the default name,

so check that user defined register names are consistant.
User defined register names are case sensitive.

Please correct and try again.

KCPSM3 complete.

Each subsequent run of the assembler overwrites the previous result files with new ones.

After generating the binaries, you can close the DOSBox window by typing exit.

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 8

V. PicoBlaze implementation in Spartan-3A.

We run ISE Design Suite 14.7 and create a new project named pico_testl, in the
Xilinx work working folder. Then, by default, it will be saved in the same folder where the
PicoBlaze microprocessor files are already generated.

Name: pico_testl

Location: C:\Xilinx_work\pico_test1

Working Directory: | C:\Xilinx_work\pico_test1

W kolejnym kroku tradycyjnie nalezy poda¢ parametry uktadu docelowego.

Property Name Value

Evaluation Development Board None Specified v
Product Category All v
Family Spartan3A and Spartan3AN v
Device XC3S50A v
Package TQ144 v
Speed -4 v

Top-Level Source Type HDL
Synthesis Tool XST (VHDL/Verilog) v

Simulator 1Sim (VHDL/Verilog) “
Preferred Language VHDL v
Property Specification in Project File | Store all values v
Manual Compile Order U
VHDL Source Analysis Standard VHDL-93 "
Enable Messaqe Filtering |

Add source files to the created project by selecting Project — Add Source... First, add the
kepsm3.vhd and PICOTEST.VHD files. After adding them, they should appear in the list

of files in the project window.

Design +O08F X
| View: @ {ﬂ:i} Implementation O @ Simulation
[=] | Hierarchy

I8 & pico_test1
-1 4 xc3s50a-4tq144
3 g“n kcpsm3 - low_level_definition (kepsm3.vhd)
s picotest - low_level_definition (PICOTEST.VHD)

Double clicking on the PICOTEST.VHD file will open it in the program's editing window.
In the header part of this file there is a design unit called picotest, which is the program

memory of the microcontroller.

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page |9

entity picotest is
Port (address : in std_logic_vector(9 downto 9);
instruction : out std_logic_vector(17 downto 9);
clk : in std_logic);
end picotest;

Double clicking on the kcpsm3.vhd file will load its content in the editing window.

In this file, in the header part, there is a declaration of the main microcontroller design unit.

entity kcpsm3 is

Port (address : out std_logic_vector(9 downto 9);
instruction : in std_logic_vector(17 downto 0);
port_id : out std_logic_vector(7 downto 0);

write_strobe : out std_logic;
out_port : out std_logic_vector(7 downto 90);

read_strobe : out std_logic;
in_port : in std_logic_vector(7 downto 9);

interrupt : in std_logic;

interrupt_ack : out std_logic;

reset : in std_logic;

clk : in std_logic);

end kcpsm3;

For the proper operation of the project, it is necessary to connect the added
components into a single whole using the top level architecture. To do this, we create a new
source file in the project called top level.vhd. When creating a VHDL module, we add
3 ports:

& Mew Source Wizard it

- Define Module
Specify ports for module,

Entity name | top_level

Architecture name | Behavioral

Port Mame Direction Bus MSB LSB &
SW in - 7 0
CLK in e
LED out w 7 0
in ~]
in ~]
— w

More Info < Badk Cancel

Inside top_level architecture we add 2 components: kepsm3 —PicoBlaze core and picotest

— memory with the microcontroller program.

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 10

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity top_level is
Port (SW : in STD_LOGIC_VECTOR (7 downto 9);
clk : in STD_LOGIC;
LED : out STD_LOGIC_VECTOR (7 downto 9));
end top_level;

architecture Behavioral of top_level is

-- PicoBlaze core

component kcpsm3

port (address : out std_logic_vector(9 downto 9);
instruction : in std_logic_vector(17 downto 9);
port_id : out std_logic_vector(7 downto 0);
write_strobe : out std_logic;
out_port : out std_logic_vector(7 downto 9);
read_strobe : out std_logic;
in_port : in std_logic_vector(7 downto 9);
interrupt : in std_logic;
interrupt_ack : out std_logic;
reset : in std_logic;
clk : in std_logic);

end component;

-- program memory

component picotest

port (address : in std_logic_vector(9 downto 9);
instruction : out std_logic_vector(17 downto 9);
clk : in std_logic);

end component;

It is also necessary to add signals inside the architecture, connecting these components with
each other and with the input and output ports of the design unit (ultimately with the pins of
the FPGA).

-- Signals used to connect PicoBlaze core to program memory and I/0 logic
signal address : std_logic_vector(9 downto 9);

signal instruction : std_logic_vector(17 downto 0);

signal port_id : std_logic_vector(7 downto 0);

signal out_port : std_logic_vector(7 downto 90);

signal in_port : std_logic_vector(7 downto 0);

signal write_strobe : std_logic;

signal read_strobe : std_logic;

signal interrupt_ack : std_logic;

signal reset : std_logic;

-- interrupt input is not used - assigned as inactive value '0’
signal interrupt : std_logic :='9’;

In the description of the architecture, instances of previously added components must
be created between the begin and end keywords. The command port map is used for this,
which binds the signals within the architecture and the I/O ports of the top_level design unit

with the ports of the components.

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 11

-- Instantiating the PicoBlaze core

processor: kcpsm3

port map (address => address,
instruction => instruction,
port_id => port_id,
write_strobe => write_strobe,
out_port => out_port,
read_strobe => read_strobe,
in_port => in_port,
interrupt => interrupt,
interrupt_ack => interrupt_ack,
reset => reset,
clk => clk);

-- Instantiating the program memory

program: tutorial

port map (address => address,
instruction => instruction,
clk => clk);

Two more processes will be added to the project: one to handle the microcontroller's input

port and the other to handle its output port.

-- PicoBlaze 1input port at adress ©6h
input_ports: process(clk)
begin
if clk'event and clk='1"' then
case port_id(1 downto 9) is
when "00" => in_port <= SW;

when others => in_port <= "XXXXXXXX";

end case;
end if;
end process input_ports;

-- PicoBlaze output port at address 86h
output_ports: process(clk)
begin
if clk'event and clk='1" then
if port_id(7)='1" then
LED <= out_port;
end if;
end if;
end process output_ports;

end Behavioral;

--address 06h

--other addresses are not used

After saving changes in the project, the change in the project hierarchy - components added

to the top_level unit will be visible as subordinate.

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653

Page | 12

Hierarchy
'-?'_'] pico_test]
=1 £ xc3s30a-4tqldd
= [hgleits - top_level - Behavioral (top_level.vhd]
"y processor - kepsm3 - low_level_definition (kepsm3.vhd)
'y program - picotest - low_level_definition (PICOTEST.VHD)

At this stage, you can validate the syntax and content of the source files by running
the Synthesize XST process. If the program does not detect errors, before generating the
configuration file, you still need to bind the top level unit ports to the FPGA pins using the
UCEF file. To do this, add a new source file named top_level by selecting the Implementation
Constraints File option in the file type selection window. In the editing window that will
open right after creating the file, paste the following fragment with the assignment of pins

to port names.

NET "clk"™ LOC = P129 | IOSTANDARD = LVCMOS33 | PERIOD = 12MHz;

NET "LED[@]" LOC = P46
NET "LED[1]" LOC = P47
NET "LED[2]" LOC = P48 IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
NET "LED[3]" LOC = P49 IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;

[| IOSTANDARD = LVCMOS33 | |
[I I I
[I I I
[I I I
NET "LED[4]" LOC = P50 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
[I I |
[I I |
[I I |

IOSTANDARD = LVCMOS33

SLEW = SLOW
SLEW = SLOW

DRIVE = 12;
DRIVE = 12;

NET "LED[5]" LOC = P51 IOSTANDARD = LVCMOS33 SLEW = SLOW | DRIVE = 12;
NET "LED[6]" LOC = P54 IOSTANDARD = LVCMOS33 SLEW = SLOW | DRIVE = 12;

NET "LED[7]" LOC = P55 IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;

NET "SW[@]" LOC = P70 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
NET "SW[1]" LOC = P69 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
NET "SW[2]" LOC = P68 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
NET "SW[3]" LOC = P64 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
NET "SW[4]" LOC = P63 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
NET "SW[5]" LOC = P60 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
NET "SW[6]" LOC = P59 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
NET "SW[7]" LOC = P58 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;

If the editing window does not open automatically, select the top_level.ucf file on
the list of project source files and then select the Edit Constraints (Text) option in the process
window. After saving the project again, you can proceed to its synthesis, implementation
and generation of the configuration file (top_level.bit or top_level.bin). To program the
Spartan-3A system with a file generated from the project, the ElbertV2Config program
should be used as standard. The microcontroller program should start working after the

programming of the FPGA is completed.

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 13

References

e Ken Chapman — PicoBlaze: KCPMS3 — 8-bit microcontroller for Spartan-3, Virtex-11
and Virtex-1I PRO

e M. Nowakowski — PicoBlaze. Mikroprocesor w FPGA. Wydawnictwo BTC, Legionowo
2009.

e UG331 - Spartan-3 Generation FPGA User Guide
https://docs.xilinx.com/v/u/en-US/ds529

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 14

