

Teaching online electronics, microcontrollers and programming in Higher Education

Output 2: Online Course for Microcontrollers: syllabus, open educational resources

Practice leaflet: Module_1-2 pins as inputs

Lead Partner: International Hellenic University (IHU)

Authors: Theodosios Sapounidis [IHU], Aristotelis Kazakopoulos [IHU], Aggelos Giakoumis [IHU], Sokratis Tselegkaridis [IHU]

Declaration

This report has been prepared in the context of the ENGINE project. Where other published and unpublished source materials have been used, these have been acknowledged.

Copyright

© Copyright 2021 - 2023 the ENGINE Consortium

Warsaw University of Technology (Poland)

International Hellenic University (IHU) (Greece)

European Lab for Educational Technology- EDUMOTIVA (Greece)

University of Padova (Italy)

University of Applied Sciences in Tarnow (Poland)

All rights reserved.

This document is licensed to the public under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Funding Disclaimer

This project has been funded with support from the European Commission. This report reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Table of Contents

Executive summary	4
Chapter 1: Overview	5
Chapter 2: Activities	8
2.1 Activity 1. Switches	8
2.2 Activity 2. Push-buttons	. 12
2.3 Activity 3. Seven segment display	. 21
Chapter 3: Recapitulation	30
References	31

Executive summary

In this Module we will use Arduino Uno pins as inputs.

Chapter 1: **Overview**

Table 1. Overview

Title / short summary	Pins as inputs: switches and push-buttons In this lesson we will use Arduino Uno pins as inputs.		
Expected learning outcomes	 Students completing the course will be able to: Recognize basic Arduino Uno functions and programming structures Understand the define of pins as inputs Design and implement simple circuits with switches and pushbuttons 		
Keywords	Input pins, switch, push-button		
Duration	 The duration of the module_1-2 is 3 hours Module_1-2 slides - 30 minutes 1st activity: switches - 50 minutes 2nd activity: push-buttons - 55 minutes 3rd activity: switch and push-button - 45 minutes 		

Involved	 The students: Take part in activities Complete circuit Answer questionnaires The teachers: Show the presentation of the module Answer questions Point out the tips Encourage participation and discussion
Assignment	The module_1-2 includes:2 Open Projects
Educational tools and equipment	Material: PCSoftware: browser, Tinkercad
Prerequisites / pre-existing knowledge	 Students should have knowledge of wiring electronic components in breadboard (link1) Students should have basic programming knowledge in C language (link2) Students should be familiar with the Tinkercad environment (link3, tutorial video) Students should have studied the educational material (slides) of Module_1-1 and Module_1-2

Educational content	 Accompanying material: Module_1-2 slides Module_1-2 Evaluation leaflet Module_1-2 Open Projects
Tips	 <i>Tip 1</i>. When the switches are open the Arduino Uno reads "0", while when they are closed the Arduino Uno reads "1" - pay attention to the wiring/topology <i>Tip 2</i>. The voltmeter is always connected in parallel with the circuit <i>Tip 3</i>. The RGB LED in Tinkercad is a common cathode <i>Tip 4</i>. For the button: if it is not pressed, terminal_1a is short-circuited with terminal_1b and terminal_2a with terminal_2b. When it is pressed, all 4 ends are short-circuited

Chapter 2: Activities

2.1 Activity 1. Switches

This activity uses switches that provide input signals on the Arduino Uno. The main objective is to understand the circuit wiring and the corresponding code.

Table 2. Activity 1

Activity 1a (20 minutes)	 In this part the aim is for the Arduino Uno to read the states of 2 switches A buzzer follows the state of the first input. That is, the buzzer is activated when "1" comes from the switch_1 An LED follows the reverse state of the second input. That is, the LED is activated when "0" comes from the switch_2 A voltmeter has been added to the circuit to check the voltage at the switch_2 			
	Step 1. Draw the circuit in Tinkercad			
	Step 2. Write the microcontroller code			
	Step 3. Simulate the circuit and test it			
Step 1 (8 minutes)	<image/> <image/> <caption></caption>			

	Study the code and write it on the microcontroller:				
	/* Switches, buzzer and LED				
Step 2 (10 minutes)	<pre>Circuit Connections: PIN_0 => Resistor 220Ω => Buzzer_Positive - Buzzer_Negative = > Gnd PIN_1 => Resistor 220Ω => LED_Anode - LED_Cathode = > Gnd PIN_8 => Pull down resistor (220Ω) => switch_1 (Vcc) PIN_9 => Pull down resistor (220Ω) => switch_2 (Vcc) */</pre>				
	<pre>#define Buzzer_pin 0 //give the name "Buzzer_pin" to PIN_0 #define led_pin 1 //give the name "led_pin" to PIN_1 #define Sw1_pin 8 //give the name "Sw1_pin" to PIN_8 #define Sw2_pin 9 //give the name "Sw2_pin" to PIN_9</pre>				
	<pre>//The setup() function initializes and sets the initial values //It will only run once after each powerup or reset void setup() { //Configure PIN_0 and PIN_1 to behave as output //Configure PIN_8 and PIN_9 to behave as input pinMode(Buzzer_pin, OUTPUT); pinMode(led_pin, OUTPUT); pinMode(sw1_pin, INPUT); pinMode(Sw2_pin, INPUT); } //This function loops consecutively void loop() { //The Buzzer follows the state of switch_1 digitalWrite(Buzzer_pin, digitalRead(Sw1_pin)); //The LED follows the invert state of switch_2 digitalWrite(led_pin, !digitalRead(Sw2_pin)); } </pre>				
Step 3 (2 minutes)	Run the simulation and check the correct operation of the circuit <i>Tip.</i> According to the code, when the voltmeter shows 5V the LED stays off, while when it shows 0V, the LED is activated.				

	In this part the aim is for the Arduino Uno to read the states of 2 switches, and drive an RGB LED whose color depends on the combinations of input: Possible states and RGB LED				
		Switch_1	Switch_4	RGB LED	
		0	0	OFF	
Activity 1b		0	1	Red	
(30 minutes)		1	0	Green	
		1	1	Blue	
	Step 2. Wri Step 3. Sim Step 4. Mo	te the microc nulate the circ difications an	ontroller cod uit and test it d discussion	le t	
Step 1 (8 minutes)	Draw the ne	Ext circuit in '	Tinkercad.	RGB LED	

```
Study the code and write it on the microcontroller:
                 /* Switches and RGB LED
                 Circuit Connections:
                 PIN 3 => Resistor 220\Omega => Red pin of RGB LED
                 PIN 5 => Resistor 220\Omega => Blue pin of RGB LED
                 PIN 6 => Resistor 220\Omega => Green pin of RGB LED
                 PIN 8 => Pull down resistor (220\Omega) => switch 1
                 (Vcc)
                 PIN 9 => Pull down resistor (220\Omega) => switch 4
                 (Vcc)
                 */
                 #define R pin 3
                                         //give the name "R pin" to
                 PIN 3
                 #define G pin 6
                                        //give the name "G pin" to
                 PIN 6
                 #define B pin 5
                                            //give the name "B pin"
                 to PIN 5
                                      //give the name "Sw1 pin" to
                 #define Sw1 pin 8
                 PIN 8
                 #define Sw4 pin 9
                                      //give the name "Sw4 pin" to
                 PIN 9
                 //The setup() function initializes and sets the
                 initial values
                 //It will only run once after each powerup or reset
  Step 2
                 void setup()
(15 minutes)
                 {
                   //Configure PIN 3, PIN 5 and PIN 6 to behave as
                 output
                   //Configure PIN_8 and PIN_9 to behave as input
                   pinMode(R_pin, OUTPUT);
                   pinMode(G pin, OUTPUT);
                   pinMode(B pin, OUTPUT);
                   pinMode(Sw1 pin, INPUT);
                   pinMode(Sw4 pin, INPUT);
                 }
                 //This function loops consecutively
                 void loop() {
                   if(digitalRead(Sw1_pin)==0
                                                                  88
                 digitalRead(Sw4 pin)==0) {
                       //RGB LED is OFF
                       analogWrite(R_pin, 0); //Write 0% PWM to
                 pin 3
                       analogWrite(G pin, 0);
                                                  //Write 0% PWM to
                 pin 6
                       analogWrite(B pin, 0);
                                                  //Write 0% PWM to
                 pin 5
                       delay(1000);
                                                             // Wait
                 for 1 second
                   }
                   else
                               if(digitalRead(Sw1 pin)==0
                                                                  & &
                 digitalRead(Sw4 pin)==1) {
                       //red color for RGB = > R=255, G=0, B=0
                       analogWrite(R pin, 255); //Write 100% PWM to
                 pin 3
```

Step 4 (5 minutes)	 Suggested modifications and discussion: What should be changed in the inputs of the Arduino Uno so that the RGB LED instead of red, green, and blue illuminates pink, yellow and white? What should be added to switches 2 and 3 so that their states can be read by the Arduino Uno? 	
Step 3 (2 minutes)	Run the simulation and check the correct operation of the circuit	
	<pre>analogWrite(G_pin, 0); //Write 0% PWM to pin 6 analogWrite(B_pin, 255); //Write 100% PWM to pin 5 delay(1000);</pre>	
	<pre>digitalRead(Sw4_pin)==1) //blue color = > RGB=0,0,255 analogWrite(R_pin, 0); //Write 0% PWM to pin 3 conclectWrite(C_pin, 0); //Write 0% PWM to </pre>	
	<pre>delay(1000);</pre>	
	analogWrite(G_pin, 255); //Write 100% FWM to pin 6 analogWrite(B_pin, 0); //Write 0% FWM to pin 5	
	<pre>//green color for RGB = > R=0, G=255, B=0 analogWrite(R_pin, 0); //Write 0% PWM to pin 3</pre>	
	<pre>} else if(digitalRead(Sw1_pin)==1 && digitalRead(Sw4 pin)==0){</pre>	
	pin 5 delay(1000); // Wait for 1 second	
	<pre>analogWrite(G_pin, 0); //Write 0% PWM to pin 6 analogWrite(B pin, 0); //Write 0% PWM to</pre>	

2.2 Activity 2. Push-buttons

This activity uses push-button that provide input signals on the Arduino Uno. The main objective is to understand the circuit wiring and the corresponding code.

Table 3.Activity 2

Activity 2a (15 minutes)	 In this part the aim is for the Arduino Uno to read the states of a push-button. An LED follows the states of the push-button The push-button is connected to PIN_4. The built-in pull-up resistor is activated with an appropriate setting in pinMode(), so no external resistor needs to be used A voltmeter has been added to the circuit to check the voltage at the PIN_4 <i>Tip.</i> With this connection when the push-button is pressed the Arduino Uno reads "0" to the input and the LED is turned off Step 1. Draw the circuit in Tinkercad Step 3. Simulate the circuit and test it 		
Step 1 (6 minutes)			

	Study the code and write it on the microcontroller:
Step 2 (7 minutes)	/* Push-button and LED
	Circuit Connections: PIN_0 => LED_Anode - LED_Cathode = > Resistor 220Q => Gnd PIN_4 => Pull-up resistor (built in) => push-button (Gnd) */
	<pre>#define led_pin 0 //give the name "led_pin" to PIN_0 #define pb_pin 4 //give the name "pb_pin" to PIN_4</pre>
	<pre>//The setup() function initializes and sets the initial values //It will only run once after each powerup or reset void setup() {</pre>
	<pre>//Configure PIN_0 to behave as outputs pinMode(led_pin, OUTPUT); //Configure PIN_4 to behave as input with activated pull-up resistor pinMode(pb_pin, INPUT_PULLUP); }</pre>
	<pre>//This function loops consecutively void loop() { //The LED follows the state of push-button digitalWrite(led_pin, digitalRead(pb_pin)); }</pre>
Step 3 (2 minutes)	Run the simulation and check the correct operation of the circuit

Activity 2b (40 minutes)	 In this part the aim is for the Arduino Uno to read the states of a push-button. When the push-button is pressed and released, the Arduino Uno counts from 0 to 9 on a common cathode seven segment display, with numbers changing every 500ms. The push-button is connected to PIN_7. The built-in pull-up resistor is activated with an appropriate setting in pinMode(), so no external resistor needs to be used A voltmeter has been added to the circuit to check the voltage at the PIN_7 		
	Step 1. Draw the circuit in TinkercadStep 2. Write the microcontroller code		
	Step 3. Simulate the circuit and test it		
	Step 4. Modifications and discussion		
	Draw the next circuit in Tinkercad		
Step 1 (15 minutes)	<complex-block></complex-block>		

```
Study the code and write it on the microcontroller:
                /* Push button and seven segment display
                Circuit Connections:
                Seven segment common Cathode = > Gnd
                PIN 0 => Resistor 220\Omega => Segment a
                PIN 1 => Resistor 220\Omega => Segment b
                PIN 2 => Resistor 220\Omega => Segment c
                PIN 3 => Resistor 220\Omega => Segment f
                PIN 4 => Resistor 220\Omega => Segment g
                PIN 5 => Resistor 220\Omega => Segment d
                PIN 6 => Resistor 220\Omega => Segment e
                PIN 7 => Pull-up resistor (built in) => push-button
                 (Gnd)
                 */
                 #define A_pin 0
                                     //give the name "A pin" to
                 PIN 0
                 #define B pin 1
                                     //give the name
                                                       "B pin"
                                                                 to
                PIN 1
                 #define C pin 2
                                     //give the name
                                                       "C pin"
                                                                to
                PIN 2
                 #define D pin 5
                                     //give the name
                                                       "D pin"
                                                                to
                 PIN 5
                 #define E pin 6
                                     //give the name
                                                        "E pin"
                                                                 to
                PIN 6
                 #define F pin 3
                                     //give the name
                                                        "F pin"
  Step 2
                                                                 to
                PIN 3
(18 minutes)
                 #define G pin 4 //give the name "G pin" to
                PIN 4
                 #define pb pin 7
                                          //give the name "pb pin"
                to PIN 7
                boolean pressAndReleased=false; //flag for
                push-button
                 //The setup() function initializes and sets the
                initial values
                 //It will only run once after each powerup or reset
                void setup() {
                   pinMode(A pin, OUTPUT); //Configure the PIN 0
                 to behave as output
                  pinMode(B pin, OUTPUT); //Configure the PIN 1
                 to behave as output
                  pinMode(C pin, OUTPUT); //Configure the PIN 2
                 to behave as output
                                            //Configure the PIN 5
                  pinMode(D pin, OUTPUT);
                 to behave as output
                  pinMode(E pin, OUTPUT); //Configure the PIN 6
                 to behave as output
                  pinMode(F_pin, OUTPUT); //Configure the PIN 3
                 to behave as output
                  pinMode(G_pin, OUTPUT); //Configure the PIN 4
                 to behave as output
                  //Configure PIN_7 to behave as input with
                 activated pull-up resistor
                   pinMode(pb_pin, INPUT PULLUP);
                 }
```

```
//This function loops consecutively
void loop() {
                                   //push-button
  if
        (digitalRead(pb pin)==0){
pressed
  delay(25);
             //debounce
      while(digitalRead(pb pin)==0) {;}
      //push-button released
      delay(25);
                 //debounce
      //set the flag to true
      pressAndReleased=true;
  }
  //check the flag for push-button press
                                               and
release
  if (pressAndReleased == true) {
      //call the function "sevenSegment"
                                               and
display the numbers from 0 to 9
      for (int i=0; i<10; i++) {</pre>
           sevenSegment(i);
           delay(500);
                           //wait for 0.5 second
      }
      //set the flag to false
      pressAndReleased =false;
      //deactivate every segment
      digitalWrite(A pin, LOW);
      digitalWrite(B_pin, LOW);
      digitalWrite(C_pin, LOW);
      digitalWrite(D_pin, LOW);
      digitalWrite(E pin, LOW);
      digitalWrite(F pin, LOW);
      digitalWrite(G pin, LOW);
  }
}
//This function activates and deactivates the
segments
//so the numbers appear on the display
void sevenSegment (int selection) {
  switch(selection) {
  case 0:
  /* display 0
       _
       | |
       | |
    */
  digitalWrite(A pin, HIGH);
  //activate segment A
  digitalWrite(B pin, HIGH);
  //activate segment B
  digitalWrite(C pin, HIGH);
  //activate segment C
  digitalWrite(D_pin, HIGH);
  //activate segment D
  digitalWrite(E pin, HIGH);
  //activate segment E
  digitalWrite(F_pin, HIGH);
  //activate segment F
  digitalWrite(G pin, LOW);
  //deactivate segment G
  break;
```

case 1:
/* display 1
*/
digitalWrite(A pin, LOW):
(depativete comment)
//deactivate segment A
digitalWrite(B_pin, HIGH);
//activate segment B
digitalWrite(C pin, HIGH);
//activate segment C
//activate segment c
digitalwrite(D_pin, LOW);
//deactivate segment D
<pre>digitalWrite(E pin, LOW);</pre>
//deactivate segment F
//deactivate segment E
digitalWrite(F_pin, LOW);
//deactivate segment F
<pre>digitalWrite(G pin, LOW);</pre>
//deactivate segment G
break;
case 2:
/* display 2
/ dispidy 2
-
-
-
*/
<pre>digitalWrite(A pin, HIGH);</pre>
//activate segment A
digital Waite (D. sin UTCU) .
digitalwrite (B_pin, High);
//activate segment B
<pre>digitalWrite(C pin, LOW);</pre>
//deactivate_segment_C
digital Write (D pip UICU) .
() () () () () () () () () () () () () (
//activate segment D
<pre>digitalWrite(E pin, HIGH);</pre>
//activate segment E
digitalWrite(F nin IOW).
//deastinate company 7
//deactivate segment F
dıgıtalWrite(G_pin, HIGH);
//activate segment G
break;
case 3:
/* display 3
_
-
-
*/
digitalWrite(A nin HICH).
(/
//activate segment A
<pre>digitalWrite(B pin, HIGH);</pre>
//activate segment B
digitalWrite(C pip UTCU).
urgruarwirue (c_pin, niGn),
//activate segment C
<pre>digitalWrite(D pin, HIGH);</pre>

//activate segment D
digitalWrite(E pin. LOW):
//deactivate segment E
digitalWrite(F pin, LOW):
//deactivate segment F
digitalWrite (C pin UTCU).
//activato sogment C
//activate segment G
preak;
case 4:
/* display 4
-
*/
<pre>digitalWrite(A_pin, LOW);</pre>
//deactivate segment A
<pre>digitalWrite(B_pin, HIGH);</pre>
//activate segment B
<pre>digitalWrite(C pin, HIGH);</pre>
//activate segment C
digitalWrite(D pin, LOW);
//deactivate segment D
digitalWrite(E pin, LOW);
//deactivate segment E
digitalWrite(F pin, HIGH);
//activate segment F
digitalWrite(G pin, HIGH):
//activate segment G
hreak:
~_~un,
case 5:
/* display 5
, aropray 5 _
_
_
*/
digitalWrite(A sin UTCU).
//activate account 3
//activate segment A
digitalwrite(B_pin, LOW);
//deactivate segment B
<pre>algitalWrite(C_pin, HIGH); //astringto.astrice</pre>
//activate segment C
<pre>digitalWrite(D_pin, HIGH);</pre>
//activate segment D
<pre>digitalWrite(E_pin, LOW);</pre>
//deactivate segment E
<pre>digitalWrite(F_pin, HIGH);</pre>
//activate segment F
<pre>digitalWrite(G_pin, HIGH);</pre>
//activate segment G
break;
case 6:
/* display 6
-

_
* /
/ digitalWaita (D. gig. TOW).
digitalwrite(A_pin, LOW);
//deactivate segment A
<pre>digitalWrite(B pin, LOW);</pre>
//deactivate_segment B
digitalwrite(C_pin, high);
//activate segment C
digitalWrite(D pin, HIGH);
//activate segment D
digitalWrite(F nin HTCH).
(/actionstaneouset B
//activate segment E
digitalWrite(F_pin, HIGH);
//activate segment F
digitalWrite(G pin, HIGH);
//activate segment C
//activate segment G
break;
case 7:
/* display 7
/ display /
-
* /
digitalWrite(A_pin, HIGH);
//activate segment A
<pre>digitalWrite(B pin, HIGH);</pre>
//activate segment B
digitalwrite(C_pin, High);
//activate segment C
<pre>digitalWrite(D pin, LOW);</pre>
//deactivate_segment_D
digitalWrite (E pin IOW).
digitalwrite(E_pin, LOW);
//deactivate segment E
digitalWrite(F pin, LOW);
//deactivate segment F
digitalWrite(C nin IOW).
(/)
//deactivate segment G
break;
case 8:
/* dignlay 8
/ utspray o
-
-
-
*/
<pre>digitalWrite(A pin, HIGH);</pre>
//activate segment A
digitalWrite(P nin UTCU).
(/astissta.es. i. D
//activate segment B
<pre>digitalWrite(C_pin, HIGH);</pre>
//activate segment C
digitalWrite(D pin_ HIGH):
//activato sogmant D
//activate segment D
dıgitalWrite(E_pin, HIGH);
//activate segment E
<pre>digitalWrite(F pin, HIGH);</pre>
//activate segment F
// dectrace beginene i

	<pre>digitalWrite(G_pin, HIGH); //activate segment G break; case 9: /* display 9</pre>
Step 3 (2 minutes)	Run the simulation and check the correct operation of the circuit
Step 4 (5 minutes)	 Suggested modifications and discussion: What should be changed for the input pin if the built-in pull-up resistor was not activated? What should be changed so that when the push-button is pressed the Arduino Uno reads "1" (5V)?

2.3 Activity 3. Seven segment display

This activity uses push-button and switches that provide input signals on the Arduino Uno. The main objective is to understand the circuit wiring and the corresponding code.

Table 4.Activity 3

A crimitu 2	When count: The n • Th res no • A • the	the push-bu s from 0 to umbers chan e push-butto sistor is activ external resivent voltmeter ha PIN_7	atton is press 9 on a comm ge at a rate d on is connect ated with an stor needs to s been added States and time	sed and rele non cathode efined by sw ted to PIN_7 appropriate s be used to the circuit e delay setting	ased , the Are seven segme itches states, 7. The built- setting in pinl t to check the	duino Uno nt display. Table 2. in pull-up Mode(), so
(45 minutes)	[Switch_1	Switch_2	Switch_3	delay_ms	
, , , , , , , , , , , , , , , , , , ,		0	0	0	200	
		0	0	1	2000	
	-	1	1	0	400	
	-	1	1	1	4000	
	l	All o	other combinat	ions	500	
	Step 2 Step 2 Step 3	 Draw the of Write the f Simulate t 	circuit in Tinl microcontroll he circuit and	kercad ler code l test it		
Step 1 (20 minutes)	Figure	the next circ	euit in Tinker	cad.	5.00	play

	Study the code and write it on the microcontroller:
	/* Switches, push-button and Seven segment display
	, exitence, pacin baccon and beven beginne alopia,
	Circuit Connections:
	PIN 0 => Resistor 220 Ω => Segment a
	PIN 1 => Resistor 220Ω => Segment b
	PIN_2 => Resistor 2200 => Segment c PIN_3 => Resistor 2200 => Segment f
	$PIN_4 => Resistor 220\Omega => Segment g$
	PIN_5 => Resistor 220 Ω => Segment d
	PIN_6 => Resistor 2200 => Segment e PIN 7 => Pull-up resistor (built in) => push-button
	(Gnd)
	$PIN_A2 \Rightarrow$ Switch_1 (Vcc)
	PIN_AI => Switch_2 (VCC) PIN_AO => Switch_3 (Vcc)
	*/
	#define A_pin 0 //give the name "A_pin" to
	#define B pin 1 //give the name "B pin" to
	PIN_1
	#define C_pin 2 //give the name "C_pin" to
	#define D_pin 5 //give the name "D_pin" to
(20 minutos)	PIN_5
(20 minutes)	#define E_pin 6 //give the name "E_pin" to PIN 6
	<pre>#define F_pin 3 //give the name "F_pin" to</pre>
	PIN_3 #define G pin 4 //give the name ``G pin" to
	PIN_4
	<pre>#define pb_pin 7 //give the name "pb_pin" to pIN_7</pre>
	#define sw1 pin A2 //give the name "sw1 pin to
	PIN_A2
	#define sw2_pin Al //give the name "sw1_pin_ to PTN A1
	#define sw3_pin A0 //give the name "sw1_pin_ to
	PIN_A0
	<pre>boolean pressAndReleased=false; //flag for</pre>
	push-button
	int speed; //variable for delay time
	<pre>//The setup() function initializes and sets the initial values</pre>
	//It will only run once after each powerup or reset
	void setup() {
	<pre>pinMode(A_pin, OUTPUT); //Configure the PIN_0 to behave as output</pre>
	pinMode(B pin, OUTPUT); //Configure the PIN 1
	to behave as output
	<pre>pinMode(C_pin, OUTPUT); //Configure the PIN_2 to behave as output</pre>
	to penave as output

```
pinMode(D pin, OUTPUT); //Configure the PIN 5
to behave as output
 pinMode(E pin, OUTPUT);
                            //Configure the PIN 6
to behave as output
 pinMode(F pin, OUTPUT);
                            //Configure the PIN 3
to behave as output
  pinMode(G pin, OUTPUT);
                            //Configure the PIN 4
to behave as output
  //Configure PIN 7 to behave as input with
activated pull-up resistor
  pinMode(pb pin, INPUT PULLUP);
  //Configure PIN A0, PIN A1 and PIN A2 to behave
as inputs
  pinMode(sw1_pin, INPUT);
  pinMode(sw2_pin, INPUT);
  pinMode(sw3 pin, INPUT);
}
//This function loops consecutively
void loop() {
  //check switches for speed settings
             (digitalRead(sw1 pin)==0
  if
                                                88
digitalRead(sw2_pin) == 0) {
    speed=200;
    if(digitalRead(sw3_pin)==1){
     speed=2000;
    }
  }
              if(digitalRead(sw1 pin)==1
  else
                                                & &
digitalRead(sw2_pin)==1) {
    speed=400;
    if(digitalRead(sw3 pin)==1){
      speed=4000;
    }
  }
  else{
    speed=500;
  }
  if
        (digitalRead(pb pin)==0) { //push-button
pressed
  delay(25); //debounce
      while(digitalRead(pb pin)==0){;}
      //push-button released
      delay(25);
                  //debounce
      //set the flag to true
     pressAndReleased=true;
  }
  //check the flag for push-button press and
release
  if (pressAndReleased == true) {
      //call the function "sevenSegment"
                                               and
display the numbers from 0 to 9
      for (int i=0; i<10; i++) {</pre>
           sevenSegment(i);
                              //wait for "speed"
           delay(speed);
milliseconds
      //set the flag to false
      pressAndReleased =false;
      //deactivate every segment
      digitalWrite(A pin, LOW);
      digitalWrite(B pin, LOW);
```

```
digitalWrite(C pin, LOW);
      digitalWrite(D_pin, LOW);
      digitalWrite(E pin, LOW);
      digitalWrite(F pin, LOW);
      digitalWrite(G pin, LOW);
  }
}
//This function activates and deactivates the
segments
//so the numbers appear on the display
void sevenSegment (int selection) {
  switch(selection) {
  case 0:
  /* display 0
       _
       | |
       */
  digitalWrite(A pin, HIGH);
  //activate segment A
  digitalWrite(B pin, HIGH);
  //activate segment B
  digitalWrite(C_pin, HIGH);
  //activate segment C
  digitalWrite(D pin, HIGH);
  //activate segment D
  digitalWrite(E pin, HIGH);
  //activate segment E
  digitalWrite(F pin, HIGH);
  //activate segment F
  digitalWrite(G pin, LOW);
  //deactivate segment G
  break;
  case 1:
 /* display 1
         */
  digitalWrite(A pin, LOW);
  //deactivate segment A
  digitalWrite(B pin, HIGH);
  //activate segment B
  digitalWrite(C pin, HIGH);
  //activate segment C
  digitalWrite(D pin, LOW);
  //deactivate segment D
  digitalWrite(E_pin, LOW);
  //deactivate segment E
  digitalWrite(F_pin, LOW);
  //deactivate segment F
  digitalWrite(G pin, LOW);
  //deactivate segment G
  break;
  case 2:
  /* display 2
       _
```

//deactivate segment E
<pre>digitalWrite(F_pin, HIGH);</pre>
//activate segment F
<pre>digitalWrite(G_pin, HIGH);</pre>
//activate segment G
break;
F.
/* display 5
, display 5
-
-
digitalWrite (A_pin, HiGH);
digitalWrite(B pin, LOW):
//deactivate segment B
<pre>digitalWrite(C pin, HIGH);</pre>
//activate segment C
<pre>digitalWrite(D_pin, HIGH);</pre>
//activate segment D
digitalWrite(E_pin, LOW); //deactivate.segment F
digitalWrite(F pin, HIGH);
//activate segment F
digitalWrite(G pin, HIGH);
//activate segment G
break;
case o: /* display 6
/ display 0
-
–
^/ digitalWrita(A pip IOW).
//deactivate segment A
digitalWrite(B pin, LOW);
//deactivate segment B
<pre>digitalWrite(C_pin, HIGH);</pre>
//activate segment C
<pre>digitalWrite(D_pin, HIGH);</pre>
//activate segment D digitalWrite(E pip HICH)·
//activate segment E
digitalWrite(F pin, HIGH);
//activate segment F
<pre>digitalWrite(G_pin, HIGH);</pre>
//activate segment G
break;
case 7.
/* display 7
* /

	break;
	}
	}
Step 3 (5 minutes)	Run the simulation and check the correct operation of the circuit

Chapter 3: Recapitulation

The circuits were designed and simulated with Tinkercad.

Basic Arduino Uno programming functions were used, such as:

- pinMode()
- delay()
- analogWrite()
- digitalWrite()
- digitalRead()

Through the activities, Arduino Uno pins were used as inputs to read states from:

- switches
- push-button

References

Breadboard \ Wiring. Retrieved from http://wiring.org.co/learning/tutorials/breadboard/

Brown, R. (2020). *Active vs. Passive buzzer: the differences*. Retrieved from <u>https://nerdytechy.com/active-vs-passive-buzzer/</u>

Learn C - Free Interactive C Tutorial. Retrieved from https://www.learn-c.org/

Learn how to use Tinkercad / Tinkercad. Retrieved from https://www.tinkercad.com/learn/circuits