

ENGINE ERASMUS+ 2020‐1‐PL01‐KA226‐HE‐095653 Page | 1

Teaching online electronics, microcontrollers and
programming in Higher Education

Hardware Implementation of Algorithms

5. Digital Clock Manager (DCM).

Lead Partner: Warsaw University of Technology

Author: Lukasz Mik

University of Applied Sciences in Tarnow

Declaration

GRANT NUMBER: 2020‐1‐PL01‐KA226‐HE‐095653

ENGINE ERASMUS+ 2020‐1‐PL01‐KA226‐HE‐095653 Page | 2

This laboratory instruction has been prepared in the context of the ENGINE project. Where other
published and unpublished source materials have been used, these have been acknowledged.

Copyright

© Copyright 2021 - 2023 the ENGINE Consortium

Warsaw University of Technology (Poland)

International Hellenic University (IHU) (Greece)

European Lab for Educational Technology- EDUMOTIVA (Greece)

University of Padova (Italy)

University of Applied Sciences in Tarnow (Poland)

All rights reserved.

This document is licensed to the public under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.

Funding Disclaimer

This project has been funded with support from the European Commission. This report reflects the
views only of the author, and the Commission cannot be held responsible for any use which may be
made of the information contained therein.

ENGINE ERASMUS+ 2020‐1‐PL01‐KA226‐HE‐095653 Page | 3

I. Distribution and management of clock signals in
the Spartan‐3 family.

From the point of view of the designer of a digital system using FPGAs, it is

necessary to properly clock all the components of this system. Logical elements located on

the surface of the semiconductor structure, due to the internal structure of the FPGA, are not

clocked simultaneously. The following factors affect the signal distribution time:

 route length - distance between source and destination

 type of route - depends on the connection resources used to transport the signal

 the number of inputs clocked simultaneously in a given segment of the

connection path

To prevent the risk of the synchronization effect disappearing, global clock lines are used in

FPGAs marked as GCLKx, where x is the line number. Assigning the clock line to the GCLK

pin informs the design program that the user wants to use the global clock line.

In addition, to minimize the impact of FPGA architecture imperfections on the

quality of projects implemented in them, Xilinx equipped Spartan 3A systems with DCM

blocks (their number depends on the logical resources of the FPGA).

Block diagram of DCM in Spartan 3

The DCM consists of 4 basic elements: DFS (Digital Frequency Synthesizer), DLL (Delay

Locked Loop), programmable Phase Shifter and Status Logic.

ENGINE ERASMUS+ 2020‐1‐PL01‐KA226‐HE‐095653 Page | 4

Using DCM, it is possible to compensate for the phase difference of the clock signals

at physically different places in the silicon structure of the chip. Thanks to the built-in DLL

loop with adjustable delay line, it is possible to synthesize internal clock signals (including

multiplication or division of the frequency of an externally connected clock signal). The

input signal for the DLL is given to the CLKIN input. The CLKFB input is used to optionally

provide a feedback signal for the feedback loop, thanks to which the DLL block can monitor

the quality of the generated clock signal. The DLL block is equipped with four signal outputs

that are copies of the signal from the CLKIN input, of which 3 are shifted in phase relative

to it by: 90°, 180° and 270°. On these outputs it is possible to obtain 50% duty cycle signals

provided that the DUTY_CYCLE_CORRECTION parameter is set to TRUE. The CLK2X

and CLK2X180 outputs generate a signal with a duty cycle of 50%, a frequency twice as

high as the frequency of the input signal and phases of 0° and 180°. The CLKDV output can

be divided by the following values: 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 9, 10,

11, 12, 13 , 14, 15 or 16. The duty cycle of this output is 50% when the division factor is an

integer.

The signals at the CLKFX and CLKFX180 outputs (shifted by 180° relative to each

other) are generated by the DFS frequency synthesizer, based on the signal fed to the CLKIN

input. The range of acceptable input frequencies of the synthesizer is in the range from 1 to

280 MHz. The frequency of the signal at said outputs is obtained by dividing or multiplying

the frequency of the input signal according to the formula:

fCLKFX = fCLKIN x M/D

where: M = {2 … 32}, D = {1 … 32}

The DCM block is also equipped with an RST reset input, which restores the default

(user-defined) configuration, and a LOCKED output, used to indicate that the DLL has

synchronized with the signal at the CLKIN input.

In advanced designs (at high clock frequencies), it is necessary to use a phase shifter

that can be dynamically controlled. However, it will not be used at this stage of the course.

ENGINE ERASMUS+ 2020‐1‐PL01‐KA226‐HE‐095653 Page | 5

II. Increasing the frequency of a clock signal using a
DCM block.

We create a new project called dcm_test1 in ISE WebPack by entering the

appropriate parameters of the target FPGA. We create a new VHDL source file (VHDL

Module) named higher_freq. In the design unit, we add one input port named CLK and one

output port named LED. After adding the ports, the design unit declaration with the header

part will look like this:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity higher_freq is
 port (CLK : in std_logic;
 LED : out std_logic);
end higher_freq;

In the next step, we add the UCF file with the assignment of unit ports to FPGA pins. When

creating a new source file, select Implementation Constraints File and enter higher_freq as

the file name. In the created file you need to add 2 lines with pin assignments..

NET "CLK" LOC = P129 | IOSTANDARD = LVCMOS33 | PERIOD = 12MHz;
NET "LED" LOC = P46 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;

After the files have been added correctly, the window with the preview of the source files

should look like this:

As you can see, the name of the project does not have to match the name of the source files.

The names of the source files also do not have to coincide with the name of the project unit.

This file naming style only makes it easier to work with projects that contain many

components.

ENGINE ERASMUS+ 2020‐1‐PL01‐KA226‐HE‐095653 Page | 6

In the next step, we add a ready IP Core block to the project using the IP tool (CORE

Generator & Architecture Wizard). By right-clicking in the Sources window or selecting the

Project → New Source option from the horizontal menu ... Then select the IP option (CORE

Generator & Architecture Wizard) and enter dcm_instance as the file name.

After clicking the Next button and moving to the next window, expand the FPGA Features

and Design → Clocking → Spartan 3E, Spartan 3A group and select the Single DCM_SP

option.

After a while, a window will open with the selection of the output file type - select VHDL

and click OK, after which a window with DCM block settings will open.

ENGINE ERASMUS+ 2020‐1‐PL01‐KA226‐HE‐095653 Page | 7

In this window, we enter the frequency of the input clock signal: 12 MHz. Uncheck the RST

and LOCKED lines (we will not use them) and check the CLKFX line - clock output with a

higher frequency. After confirming the settings with the Next button, in the next window we

confirm the use of global buffers for the clock lines indicated in the DCM block. The

frequency synthesizer (DFS) configuration will appear in the next window. We set the target

output frequency at 50 MHz.

ENGINE ERASMUS+ 2020‐1‐PL01‐KA226‐HE‐095653 Page | 8

After proceeding, a window with a summary of DFS settings will appear.

The division factor of the frequency of the clock signal from the CLKIN input has

been set to 6 and the multiplication factor to 25. The frequency at the CLKFX output will

then be: fCLKFX = 12 MHz x (25/6) = 50 MHz, i.e. as much as we specified in the

configuration window. After the DCM block is successfully generated, a file named

dcm_instance.xaw will be added to the project. By double-clicking on the name of this file

we will re-enter the DCM configuration mode. If we select the file name, in the Processes

window we can start the preview of the component template, which must be inserted into

the file with the architecture description.

The content of the dcm_instance.vhi file from which we copy this fragment will

open in the editing window:

COMPONENT dcm_instance
PORT(
 CLKIN_IN : IN std_logic;
 CLKFX_OUT : OUT std_logic;
 CLKIN_IBUFG_OUT : OUT std_logic;
 CLK0_OUT : OUT std_logic
);
END COMPONENT;

Then we paste it inside the architecture in the declaration part, i.e. before the begin keyword

that begins the behavioral description.

To test the correct operation of the project, we will define a signal called clk_50MHz

inside the architecture, which we will connect to the CLKFX_OUT output of the DCM

block. Then we will insert a process that will have a clk_50MHz signal in the sensitivity list,

and the task of this process will be to generate a clk_1Hz signal with a frequency of 1 Hz,

which we will directly connect to the LED output port.

ENGINE ERASMUS+ 2020‐1‐PL01‐KA226‐HE‐095653 Page | 9

Finally, it will be necessary to connect the DCM block to the signals inside the

architecture. The connection of the inserted component is done through the port map

keywords, followed by signals in the architecture to the ports of this component in brackets.

Since we will only use the CLKIN_IN and CLKFX_OUT lines, we can leave the others

unconnected as shown in the example below.

DCM1 : dcm_instance port map(CLKIN_IN => CLK , CLKFX_OUT => clk_50MHz);

The component label, e.g. DCM1, is necessary when placing it in the project. The complete

description of the architecture will take the form as in the listing below.

architecture Behavioral of higher_freq is

COMPONENT dcm_instance
PORT(
 CLKIN_IN : IN std_logic;
 CLKFX_OUT : OUT std_logic;
 CLKIN_IBUFG_OUT : OUT std_logic;
 CLK0_OUT : OUT std_logic
);
END COMPONENT;

signal clk_50MHz : std_logic := '0';
signal clk_1Hz : std_logic := '0';

begin

process(clk_50MHz)
variable counter_1 : integer := 0;
begin
 if rising_edge(clk_50MHz) then
 if counter_1 < 25000000 then
 counter_1 := counter_1 + 1;
 else
 counter_1 := 0;
 clk_1Hz <= not clk_1Hz;
 end if;
 end if;
end process;

LED <= clk_1Hz;
DCM1 : dcm_instance port map(CLKIN_IN => CLK , CLKFX_OUT => clk_50MHz);

end Behavioral;

After compiling the project and generating the configuration file, program the FPGA and

check if the LED flashes with a frequency of 1 Hz. Please note that the configuration file

will be named higher_freq.bit (or higher_freq.bin if the user sets it in the file generator

options).

ENGINE ERASMUS+ 2020‐1‐PL01‐KA226‐HE‐095653 Page | 10

III. Decreasing the frequency of the clock signal
using a DCM block.

An example of generating a clock signal with a frequency lower than the input clock

signal will be discussed in the example from the previous section. To do this, copy the project

under a different name. From the File menu, select the Copy Project … option and in the

dialog box that appears, enter a new name for the project, i.e. dcm_test2.

Then close the current project (File → Close Project) and open the dcm_test2 project. Since

the source files *.vhd and *.ucf still have the old name, they should be removed from the

project. Then we rename them in the project folder to lower_freq.vhd and lower_freq.ucf and

re-add them to the project with the new names. We also rename the design unit to lower_freq.

entity lower_freq is
 port (CLK : in std_logic;
 LED : out std_logic);
end lower_freq;

Then double-click on the file named dcm_instance.xaw, thanks to which we will go to the

dialog box with the configuration of the DCM block parameters. The only thing we change

ENGINE ERASMUS+ 2020‐1‐PL01‐KA226‐HE‐095653 Page | 11

in the configuration is the frequency of the clock signal at the CLKFX_OUT output. We set

the value to 5 MHz.

The configurator will calculate the CLKFX_DIVIDE and CLKFX_MULTIPLY parameters

for the frequency synthesizer itself.

In the old architecture description, we rename the clk_50MHz signal to clk_5MHz. In the

process generating the clk_1Hz signal, we change the limit value of the counter from

25000000 to 2500000.

TASKS:

 Use the CLKFX and CLKFX180 outputs to drive 2 different LEDs. Remember that

these diodes must be controlled by 2 different 1 Hz clock signals associated with the

listed outputs of the DCM block.

 Use the CLK0, CLK90, CLK180 and CLK270 outputs to control 4 different LEDs.

Remember the dependence of the 1 Hz clock signals mentioned in the previous point.

ENGINE ERASMUS+ 2020‐1‐PL01‐KA226‐HE‐095653 Page | 12

References

 J. Majewski, P. Zbysiński – Układy FPGA w przykładach. Wydawnictwo BTC,
Legionowo 2007.

 UG331 – Spartan-3 Generation FPGA User Guide

https://docs.xilinx.com/v/u/en-US/ds529

