

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 1

Teaching online electronics, microcontrollers and
programming in Higher Education

Output 2: Online Course for Microcontrollers:
syllabus, open educational resources

Practice leaflet: Module_1-4 LCD 16x2

Lead Partner: International Hellenic University (IHU)

Authors: Theodosios Sapounidis [IHU], Aristotelis
Kazakopoulos [IHU], Aggelos Giakoumis [IHU], Sokratis
Tselegkaridis [IHU]

GRANT NUMBER: 2020-1-PL01-KA226-HE-095653

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 2

Declaration

This report has been prepared in the context of the ENGINE project. Where other published and

unpublished source materials have been used, these have been acknowledged.

Copyright

© Copyright 2021 - 2023 the ENGINE Consortium

Warsaw University of Technology (Poland)

International Hellenic University (IHU) (Greece)

European Lab for Educational Technology- EDUMOTIVA (Greece)

University of Padova (Italy)

University of Applied Sciences in Tarnow (Poland)

All rights reserved.

This document is licensed to the public under a Creative Commons Attribution-NonCommercial-

NoDerivatives 4.0 International License.

Funding Disclaimer

This project has been funded with support from the European Commission. This report reflects the

views only of the author, and the Commission cannot be held responsible for any use which may be

made of the information contained therein.

http://www.engined.eu/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 3

Table of Contents

Executive summary .. 4

Chapter 1: Overview ... 5

Chapter 2: Activities .. 8

2.1 Activity 1. Basics with LCD display 16x2 .. 8

2.2 Activity 2. LCD 16x2 and push-buttons .. 12

2.3 Activity 3. LCD 16x2 and ADC .. 15

Chapter 3: Recapitulation .. 19

References ... 20

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 4

Executive summary

In this Module we will use a Liquid crystal display (16 columns, 2 rows).

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 5

Chapter 1: Overview

Table 1. Overview

Title / short

summary

LCD display 16x2:

Liquid crystal display (16 columns, 2 rows)

Expected

learning

outcomes

Students completing the course will be able to:

• Recognize basic Arduino Uno functions and programming

structures

• Use a library to communicate with the LCD 16x2

• Design and implement simple circuits with LCD 16x2

Keywords

Liquid crystal display 16x2

Duration

The duration of the module_1-4 is 3 hours

• Module_1-4 slides - 30 minutes

• 1st activity: Basics with LCD 16x2 - 50 minutes

• 2rd activity: LCD 16x2 and push-buttons - 50 minutes

• 3nd activity: LCD 16x2 and ADC - 50 minutes

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 6

Involved

The students:

• Take part in activities

• Complete code

• Answer questionnaires

The teachers:

• Show the presentation of the module

• Answer questions

• Point out the tips

• Encourage participation and discussion

Assignment

The module_1-4 includes:

• 2 Open Projects

Educational

tools and

equipment

• Material: PC

• Software: browser, Tinkercad

Prerequisites /

pre-existing

knowledge

• Students should have knowledge of wiring electronic components in

breadboard (link1)

• Students should have basic programming knowledge in C language

(link2)

• Students should be familiar with the Tinkercad environment (link3,

tutorial video)

• Students should have studied the educational material (slides) of

Module_1-1, Module_1-2, Module_1-3, and Module_1-4

Educational

content

Accompanying material:

• Module_1-4 slides

• Module_1-4 Evaluation leaflet

• Module_1-4 Open Projects

http://wiring.org.co/learning/tutorials/breadboard/
https://www.learn-c.org/
https://www.tinkercad.com/learn/circuits

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 7

Tips

Tip1. Adjusting the contrast on the LCD is done via a potentiometer

Tip2. The current in the LCD backlight must be limited by means of a

resistor

Tip3. "lcd.setCursor()" starts counting (column or row) from 0, not from

1

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 8

Chapter 2: Activities

2.1 Activity 1. Basics with LCD display 16x2
This activity uses a liquid crystal display 16x2.

Table 2. Activity 1

Activity 1a

(22 minutes)

In this part the aim is for the Arduino Uno to display the message

"Hello! This is Module_1-4 "on the LCD.

Step 1. Draw the circuit in Tinkercad

Step 2. Write the microcontroller code

Step 3. Simulate the circuit and test it

Step 1

(10 minutes)

Draw the next circuit in Tinkercad.

Figure 1. LCD display “hello”

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 9

Step 2

(10 minutes)

Study the code and write it on the microcontroller:

/* Hello! This is Module_1-4

Circuit Connections:

** LCD

 Ground => Gnd

 Power => Vcc

 Contrast => Potentiometer

 RS => PIN_0

 RW => Gnd

 E => PIN_1

 DB0 => Gnd

 DB1 => Gnd

 DB2 => Gnd

 DB3 => Gnd

 DB4 => PIN_2

 DB5 => PIN_3

 DB6 => PIN_4

 DB7 => PIN_5

 LED Anode => Vcc

 LED Cathode => Resistor 220Ω => Gnd

** Potentiometer

 Terminal 1 => Gnd

 Wiper => LCD_Contrast

 Terminal 2 => Vcc

*/

//include the library

#include <LiquidCrystal.h>

#define RS 0 //give the name "RS " to

PIN_0

#define EN 1 //give the name "EN " to PIN_1

#define DB4 2 //give the name "DB4 " to PIN_2

#define DB5 3 //give the name "DB5 " to PIN_3

#define DB6 4 //give the name "DB6 " to PIN_4

#define DB7 5 //give the name "DB7 " to PIN_5

//configure the library with Arduino Uno - LCD

interface

LiquidCrystal lcd(RS, EN, DB4, DB5, DB6, DB7);

//The setup() function initializes and sets the

initial values

//It will only run once after each power up or

reset

void setup() {

 //configure the LCD's columns and rows

 lcd.begin(16, 2);

 //print a message

 lcd.print(" Hello! This is");

 //go to: first column, second row

 lcd.setCursor(0,1);

 //print a message

 lcd.print(" Module_1-4");

}

//loops consecutively

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 10

void loop() {

 ; //do nothing

}

Tip. In the loop() we do not need to do anything as the operation of the application

has already been achieved.

Step 3

(2 minutes)

Run the simulation and check the correct operation of the circuit

Activity 1b

(28 minutes)

In this part the aim is for the Arduino Uno to count seconds. The

display takes place on a liquid crystal display 16x2.

Step 1. Draw the circuit in Tinkercad

Step 2. Write the microcontroller code

Step 3. Simulate the circuit and test it

Step 4. Modifications and discussion

Step 1

(10 minutes)

Draw the next circuit in Tinkercad.

Figure 2. Display seconds on the LCD

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 11

Step 2

(10 minutes)

Study the code and write it on the microcontroller. The 2 missing

lines must be completed:

/* Counting seconds

Circuit Connections:

** LCD

 Ground => Gnd

 Power => Vcc

 Contrast => Potentiometer

 RS => PIN_0

 RW => Gnd

 E => PIN_1

 DB0 => Gnd

 DB1 => Gnd

 DB2 => Gnd

 DB3 => Gnd

 DB4 => PIN_2

 DB5 => PIN_3

 DB6 => PIN_4

 DB7 => PIN_5

 LED Anode => Vcc

 LED Cathode => Resistor 220Ω => Gnd

** Potentiometer

 Terminal 1 => Gnd

 Wiper => LCD_Contrast

 Terminal 2 => Vcc

*/

//include the library

#include <LiquidCrystal.h>

#define RS 0 //give the name "RS " to

PIN_0

#define EN 1 //give the name "EN " to PIN_1

#define DB4 2 //give the name "DB4 " to PIN_2

#define DB5 3 //give the name "DB5 " to PIN_3

#define DB6 4 //give the name "DB6 " to PIN_4

#define DB7 5 //give the name "DB7 " to PIN_5

//configure the library with Arduino Uno - LCD

interface

LiquidCrystal lcd(RS, EN, DB4, DB5, DB6, DB7);

//The setup() function initializes and sets the

initial values

//It will only run once after each power up or

reset

void setup() {

 //configure the LCD's columns and rows

 lcd.begin(16, 2);

 //print a message

 lcd.print("Seconds:");

}

//loops consecutively

void loop() {

 //go to: first column, second row

 lcd.setCursor(0,1);

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 12

 //print a message

 lcd.print(millis() / 1000);

 //millis() return the number of milliseconds

 //passed since the program began running

}

Step 3

(3 minutes)

Run the simulation and check the correct operation of the circuit

Step 4

(5 minutes)

Suggested modifications and discussion:

• Try writing a message on the LCD larger than 16 characters.

What will happen?

2.2 Activity 2. LCD 16x2 and push-buttons
In this activity the Arduino Uno reads 2 push-buttons. One push-button hides the text written on a

liquid crystal display, while the other push-button reappears the text.

Table 3. Activity 2

Activity 2

(50 minutes)

The text on the LCD is not erased. The text is displayed or not by

the display() and noDisplay() functions.

Step 1. Draw the circuit in Tinkercad

Step 2. Write the microcontroller code

Step 3. Simulate the circuit and test it

Step 4. Modifications and discussion

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 13

Step 1

(15 minutes)

Draw the next circuit in Tinkercad.

Figure 3. LCD and display()/noDisplay()

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 14

Step 2

(15 minutes)

Study the code and write it on the microcontroller. The 2 missing

lines must be completed:

/* LCD and display / noDisplay()

Circuit Connections:

** LCD

 Ground => Gnd

 Power => Vcc

 Contrast => Potentiometer

 RS => PIN_0

 RW => Gnd

 E => PIN_1

 DB0 => Gnd

 DB1 => Gnd

 DB2 => Gnd

 DB3 => Gnd

 DB4 => PIN_2

 DB5 => PIN_3

 DB6 => PIN_4

 DB7 => PIN_5

 LED Anode => Vcc

 LED Cathode => Resistor 220Ω => Gnd

** PIN_8 (built-in pullup) => Push-button1 =>

Gnd

** PIN_9 (built-in pullup) => Push-button2

 => Gnd

*/

//include the library

#include <LiquidCrystal.h>

#define RS 0 //give the name "RS " to PIN_0

#define EN 1 //give the name "EN " to PIN_1

#define DB4 2 //give the name "DB4 " to PIN_2

#define DB5 3 //give the name "DB5 " to PIN_3

#define DB6 4 //give the name "DB6 " to PIN_4

#define DB7 5 //give the name "DB7 " to PIN_5

#define pb1 8 //give the name "pb1" to PIN_8

#define pb2 9 //give the name "pb1" to PIN_9

//configure the library with Arduino Uno - LCD

interface

=> LiquidCrystal lcd(RS, EN, DB4, DB5, DB6, DB7);

//The setup() function initializes and sets the

initial values

//It will only run once after each power up or

reset

void setup() {

 //Configure the PIN_8 to behave as input with

pull-up resistor

 pinMode(pb1, INPUT_PULLUP);

 //Configure the PIN_9 to behave as input with

pull-up resistor

 pinMode(pb2, INPUT_PULLUP);

 //configure the LCD's columns and rows

=> lcd.begin(16, 2);

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 15

 //print a message

 lcd.print("can you see me?");

}

//loops consecutively

void loop() {

 //check the push-button1

 if(digitalRead(pb1)==false){//pb1 is pressed

 delay(25); //wait for debouncing

 while(digitalRead(pb1)==false){;} //until pb1

is released

 lcd.noDisplay(); //the text disappeared

 }

 //check the push-button2

 if(digitalRead(pb2)==false){ //pb2 is pressed

 delay(25); //wait for debouncing

 while(digitalRead(pb2)==false){;} //until pb2

is released

 lcd.display(); //the text appeared

 }

}

Step 3

(5 minutes)

Run the simulation and check the correct operation of the circuit

Step 4

(15 minutes)

Suggested modifications and discussion:

• Could the application work instead of two with one push-button?

• Add a switch. When the switch is open, the text on the LCD can

be hidden by the corresponding push-button. When the switch is

closed, the text on the LCD will be displayed whether a push-

button is pressed or not. Write the appropriate code and run the

simulation

2.3 Activity 3. LCD 16x2 and ADC
This activity uses the Arduino Uno's built-in analog-to-digital converter. A liquid crystal display is

used as the output device.

Table 4. Activity 3

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 16

Activity 3

(50 minutes)

The Arduino Uno:

• Reads the analog voltage of a potentiometer

• Converts adc_value into a voltage

• A voltmeter has been added to the circuit to check the voltage

of the potentiometer

Step 1. Draw the circuit in Tinkercad

Step 2. Write the microcontroller code

Step 3. Simulate the circuit and test it

Step 4. Modifications and discussion

Step 1

(10 minutes)

Draw the next circuit in Tinkercad.

Figure 4. Arduino Uno as Voltmeter

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 17

Step 2

(15 minutes)

Study the code and write it on the microcontroller:

/* Voltmeter

Circuit Connections:

** LCD

 Ground => Gnd

 Power => Vcc

 Contrast => Potentiometer

 RS => PIN_0

 RW => Gnd

 E => PIN_1

 DB0 => Gnd

 DB1 => Gnd

 DB2 => Gnd

 DB3 => Gnd

 DB4 => PIN_2

 DB5 => PIN_3

 DB6 => PIN_4

 DB7 => PIN_5

 LED Anode => Vcc

 LED Cathode => Resistor 220Ω => Gnd

** Potentiometer1

 Terminal 1 => Gnd

 Wiper => LCD_Contrast

 Terminal 2 => Vcc

** Potentiometer2

 Terminal 1 => Gnd

 Wiper => PIN_A0

 Terminal 2 => Vcc

*/

//include the library

#include <LiquidCrystal.h>

#define RS 0 //give the name "RS " to PIN_0

#define EN 1 //give the name "EN " to PIN_1

#define DB4 2 //give the name "DB4 " to PIN_2

#define DB5 3 //give the name "DB5 " to PIN_3

#define DB6 4 //give the name "DB6 " to PIN_4

#define DB7 5 //give the name "DB7 " to PIN_5

#define pot_pin A0 //give the name "pot_pin" to

PIN_A0

//configure the library with Arduino Uno - LCD

interface

LiquidCrystal lcd(RS, EN, DB4, DB5, DB6, DB7);

//variable to save data from ADC

int adc_value; //number range 0~1023

//variable to calculate the analog voltage

float voltage;

//The setup() function initializes and sets the

initial values

//It will only run once after each power up or

reset

void setup() {

 //configure the LCD's columns and rows

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 18

 lcd.begin(16, 2);

 //print a message

 lcd.print("The voltage is");

}

//loops consecutively

void loop() {

 //read value from ADC

 adc_value = analogRead(pot_pin);

 //calculate the analog voltage

 voltage=(float)adc_value*5/1024;

 //go to: first column, second row

 lcd.setCursor(0,1);

 //print a message

 lcd.print(voltage);

 lcd.print(" Volt");

 //wait for 0.5s

 delay(500);

}

Step 3

(5 minutes)

Run the simulation and check the correct operation of the circuit

Step 4

(20 minutes)

Suggested modifications and discussion:

• Do the voltmeter readings always match the value on the LCD?

• What should be changed in order to read the values of

potentiometer2 from PIN_Α5?

Replace the potentiometer2 with the temperature sensor TMP36

and turn the Arduino Uno into a thermometer. The temperature

in degrees Celsius measured by the sensor is

𝑇 = (𝑉𝑠𝑒𝑛𝑠𝑜𝑟 − 0.5) ∗ 100

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 19

Chapter 3: Recapitulation

The circuits were designed and simulated with Tinkercad.

Basic Arduino Uno programming functions were used, such as:

• millis()

• lcd.begin()

• lcd.print()

• lcd.setCursor()

• lcd.display()

• lcd.noDisplay

Through the activities were utilized

• Arduino Uno pins for driving a LCD 16x2

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 20

References

Breadboard \ Wiring. Retrieved from http://wiring.org.co/learning/tutorials/breadboard/

Brown, R. (2020). Active vs. Passive buzzer: the differences. Retrieved from

https://nerdytechy.com/active-vs-passive-buzzer/

Learn C - Free Interactive C Tutorial. Retrieved from https://www.learn-c.org/

Learn how to use Tinkercad | Tinkercad. Retrieved from https://www.tinkercad.com/learn/circuits

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 21

