

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 1

Teaching online electronics, microcontrollers and
programming in Higher Education

Output 2: Online Course for Microcontrollers:
syllabus, open educational resources

Practice leaflet: Module_2-8 Timers

Lead Partner: International Hellenic University (IHU)

Authors: Theodosios Sapounidis [IHU], Aristotelis
Kazakopoulos [IHU], Aggelos Giakoumis [IHU], Sokratis
Tselegkaridis [IHU]

GRANT NUMBER: 2020-1-PL01-KA226-HE-095653

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 2

Declaration

This report has been prepared in the context of the ENGINE project. Where other published and

unpublished source materials have been used, these have been acknowledged.

Copyright

© Copyright 2021 - 2023 the ENGINE Consortium

Warsaw University of Technology (Poland)

International Hellenic University (IHU) (Greece)

European Lab for Educational Technology- EDUMOTIVA (Greece)

University of Padova (Italy)

University of Applied Sciences in Tarnow (Poland)

All rights reserved.

This document is licensed to the public under a Creative Commons Attribution-NonCommercial-

NoDerivatives 4.0 International License.

Funding Disclaimer

This project has been funded with support from the European Commission. This report reflects the

views only of the author, and the Commission cannot be held responsible for any use which may be

made of the information contained therein.

http://www.engined.eu/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 3

Table of Contents

Executive summary .. 4

Chapter 1: Overview ... 5

Chapter 2: Activities .. 7

2.1 Activity 1. Interrupt every 10ms .. 7

2.2 Activity 2. Delay function using Timer0 ... 10

Chapter 3: Recapitulation .. 13

References ... 14

Appendix. Figures with high resolution .. 15

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 4

Executive summary

In this Module we will use PIC18F4550 with the Timer0.

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 5

Chapter 1: Overview

Table 1. Overview

Title / short

summary

8. Timer0

Expected

learning

outcomes

• The student will be able to configure the Timer0 on the

microcontroller

• The student will be able to handle an interrupt from Timer0

• The student will be able to design simple circuits with a the Timer0

• The student will be able to load and animate a microcontroller

program in the Proteus Design Suite

Keywords

Timers, internal interrup

Duration

The duration of the module_2-8 is 3 hours

• Presentation of the module_2-8 by the teacher, 45 minutes

• 1st activity, interrupt every 10ms, 60 minutes

• 2nd activity, delay function using Timer0, 75 minutes

Involved

The teacher:

Presents the slides associated with the module_2-8 and answers question

The students:

Draw circuits in Proteus Schematic, write programs in C language, load

programs to a microcontroller and run the simulation using the Proteus

Design Suite

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 6

Assignment

At the end of the Module_2-8 will be given:

• Open Project

Educational

tools and

equipment

• Material: PC

• Software: CCS C compiler, Proteus Design Suite

Prerequisites /

pre-existing

knowledge

• The student must be familiarized with the Proteus Design Suite

(link1)

• The student must be completed Module_2-1 and Module_2-2

Educational

content

• CCS C Compiler manual (C Compiler Reference Manual)

• MICROCHIP, PIC18F2455/2550/4455/4550 Data Sheet

• Module_2-8 slides

• Module_2-8 Evaluation leaflet

• Module_2-8 Open project leaflet

• Module_2-8 Programs, Schematic Proteus (Compressed folder)

Tips

Tip. 8-bit vs 16-bit register

https://www.youtube.com/watch?v=GYAHwYUUs34&t
https://www.ccsinfo.com/downloads/ccs_c_manual.pdf
https://ww1.microchip.com/downloads/en/devicedoc/39632c.pdf

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 7

Chapter 2: Activities

2.1 Activity 1. Interrupt every 10ms
The purpose of this activity is to write a program with an interrupt service routine from Timer0 that

blinks the LEDs connected to PORTB every 200 ms. Caution! No delay functions will be used in the

program. As a time base, Timer0 will be set to trigger an interrupt every 10ms.

Table 2. Activity 1

Activity 1st

(60 minutes)

Step 1. The circuit is drawn in the Proteus Design Suite.

Step 2. Timer0 configurations.

Step 3. The program in C language is written.

Step 4. The program is compiled with the use of CCS C compiler to

the microcontroller machine code.

Step 5. The machine code is loaded to the microcontroller.

Step 6. The animation is activated.

Step 1

(10 minutes)

Draw the circuit of the picture in the Proteus Design Suite.

Figure 1. Connections

RA0/AN0
2

RA1/AN1
3

RA2/AN2/VREF-/CVREF
4

RA3/AN3/VREF+
5

RA4/T0CKI/C1OUT/RCV
6

RA5/AN4/SS/LVDIN/C2OUT
7

RA6/OSC2/CLKO
14

OSC1/CLKI
13

RB0/AN12/INT0/FLT0/SDI/SDA
33

RB1/AN10/INT1/SCK/SCL
34

RB2/AN8/INT2/VMO
35

RB3/AN9/CCP2/VPO
36

RB4/AN11/KBI0/CSSPP
37

RB5/KBI1/PGM
38

RB6/KBI2/PGC
39

RB7/KBI3/PGD
40

RC0/T1OSO/T1CKI
15

RC1/T1OSI/CCP2/UOE
16

RC2/CCP1/P1A
17

VUSB
18

RC4/D-/VM
23

RC5/D+/VP
24

RC6/TX/CK
25

RC7/RX/DT/SDO
26

RD0/SPP0
19

RD1/SPP1
20

RD2/SPP2
21

RD3/SPP3
22

RD4/SPP4
27

RD5/SPP5/P1B
28

RD6/SPP6/P1C
29

RD7/SPP7/P1D
30

RE0/AN5/CK1SPP
8

RE1/AN6/CK2SPP
9

RE2/AN7/OESPP
10

RE3/MCLR/VPP
1

U1

PIC18F4550

R1
330

R2
330

R3
330

R4
330

R5
330

R6
330

R7
330

R8
330

D1
LED-RED

D2
LED-RED

D3
LED-RED

D4
LED-RED

D5
LED-RED

D6
LED-RED

D7
LED-RED

D8
LED-RED

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 8

Step 2

(25 minutes)

Figure 2. Timer0 block diagram

The frequency in the input of the Prescaler is 12MHz.

We chose from the Prescaler the value of 1/64, therefore, the

frequency in the output of the Prescaler is 12 / 64 = 0.1875MHz.

Accordingly, the period at the input of timer 0 (Timer0) will be:

83.33 ns X 64 =5333ns

Timer0 should be initialized so that timer0 overflows every 10ms.

Overflowing timer0 means going from the value FFFF to the value

0000. The time it takes for timer0 to go from the initial value given

to it until it overflows (and thus interrupts) should be:

10ms=10 000 μs=10 000 000 ns

It is reminded that (FFFF)h = (65535)d

The number of steps from the initial value of Timer0 until it

overflows will be: 65536-(Initial value of Timer0). That is:

[65536-(Initial value of Timer0)]x5333 ns= 10 000 000 ns.

(Initial value of Timer0) = 65536-1875 =63661

Oscillator

Fosc / 4

 Prescaler

Timer 0

Frequency division 1/n
1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256

IRQ

Fosc=48 MHz

 Τ = Machine Cycle

𝑇 =
1

12𝑀𝐻𝑧
=

1

12𝑥106𝐻𝑧
= 0,08333𝑥10−6 = 83,33𝑥10−9 = 83,33 𝑛𝑠

MC = 83,33 ns MC → Machine Cycle

 𝑓 =
1

𝑇
 =12 MHz in the input of the prescaler

Interrupt Request

T input_timer=n.T

Finput_timer=f/n

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 9

Step 3

(15 minutes)

Write in CCS Compiler the program in C language

#include <main.h> // the file main.h with the

 // initial settings is included.

 // This file must be placed in the same

 // folder with the project.

 // Also the 18F4550.h file must exist

 // in the same folder with the project

#byte PORTB =0xF81

/* We attribute to the memory position 0xF81 the

name PORTB. This means that we define an 8-bit

variable whose value will be stored to the memory

position F81h.*/

#byte PORTD =0xF83

// The position F83h is the PORTD data register.

void init (void);

int counter1=20;

void main()

{

 init();

 while (TRUE){

 ;

 }

}

// Interrupt Service Routine

#INT_TIMER0

void timer0_int(void){

 set_timer0(63661);

 counter1--;

 if (counter1==0){

 counter1=20;

 PORTB=PORTB^0b11111111;

 }

}

void init (void)

{

 // Prescaler value = 1/64

 SETUP_TIMER_0(T0_INTERNAL | T0_DIV_64);

 set_timer0(63661);

 enable_interrupts(INT_TIMER0);

 enable_interrupts(GLOBAL);

 set_tris_b(0x00);

 PORTB=0x00;

}

/* Interrupt time

 (65536-63661)*[1/(Fclock/4)]*Prescaler = 9.994ms

 */

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 10

Step 4

(4 minutes)

Compile the program in C in order to create the program in the

microcontroller machine code (hex file).

Step 5

(1 minutes)

Load to the microcontroller the hex file (program in machine code)

that was created from the CCS Compiler.

Step 6

(5 minute)

Run the simulation and check the correct operation of the circuit.

2.2 Activity 2. Delay function using Timer0
In this activity we will use Timer0 to create our own "delay" function that lasts 100us

Table 3. Activity 2

Activity 2nd

(75 minutes)

*** The circuit is the same as the circuit of Activity 1 ***

Step 1. Timer0 configurations.

Step 2. The program in C language is written.

Step 3. The program is compiled with the use of CCS C compiler to

the microcontroller machine code. The machine code is loaded to

the flash memory of the microcontroller.

Step 4. The animation is activated.

Step 5. Modifications and discussion.

Step 1

(20 minutes)

The frequency in the input of the Prescaler is 12MHz.

We chose from the Prescaler the value of 1/1, therefore, the

frequency in the output of the Prescaler is 12MHz.

Accordingly, the period at the input of timer 0 (Timer0) will be:

83.33 Χ 1 = 83.33 ns.

Timer0 should be initialized so that Timer0 overflows every 100us.

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 11

Overflowing timer0 means going from the value FFFF to the value

0000. The time it takes for timer0 to go from the initial value given

to it until it overflows (and thus interrupts) should be:

100us=100000ns

It is reminded that (FFFF)h = (65535)d

The number of steps from the initial value of Timer0 until it

overflows will be: 65536-(Initial value of Timer0). That is:

[65536-(Initial value of Timer0)]x83.33 ns= 100000 ns.

(Initial value of Timer0) = 65536-1200 =64336

Step 2

(25 minutes)

Write in CCS C Compiler the program

#include <main.h> // the file main.h with the

 // initial settings is included.

 // This file must be placed in the same

 // folder with the project.

 // Also the 18F4550.h file must exist

 // in the same folder with the project

#byte PORTB =0xF81

/* We attribute to the memory position 0xF81 the

name PORTB. This means that we define an 8-bit

variable whose value will be stored to the memory

position F81h.*/

void init (void);

void timer0_int(void);

//function for our delay

void mydelay_100us(int);

int32 counter_time=0;

//Declare a variable to count the interrupts.

//It will increment by 1 every 100 µs

int32 counter_time_old=0;

int32 aaa=1;

void main(){

 init();

 while (TRUE){

 PORTB=PORTB^0b11111111;

 mydelay_100us(500);

 //delay 500Χ100μs=50 000 μs= 50 ms

 }

}

//Interrupt Service Routine

#INT_TIMER0

void timer0_int(void) {

 set_timer0(64336);

 counter_time++;

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 12

}

void init (void) {

 SETUP_TIMER_0(T0_INTERNAL | T0_DIV_1);

 set_timer0(64336);

 enable_interrupts(INT_TIMER0);

 enable_interrupts(GLOBAL);

 set_tris_b(0x00);

 PORTB=0x00;

}

void mydelay_100us(aaa){

 counter_time_old=counter_time;

 while(counter_time < counter_time_old+aaa) { }

}

Step 3

(5 minutes)

Use the CCS C Compiler to translate the programm from C

language to the microcontroller machine code. Load to the

microcontroller the hex file (machine code) that was created from

the CCS Compiler.

Step 4

(5 minutes)

Run the simulation and check the correct operation of the circuit.

Step 5

(20 minutes)

If the microcontroller oscillator is 48MHz, what is the maximum

time it can count before the Timer0 overflows?

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 13

Chapter 3: Recapitulation

 The schematic of the circuit was drawn with Proteus Design Suite.

 The programs in C was written in CCS C compiler.

 The programs in C was compiled to the microcontroller machine code (hex file).

 The machine code was “loaded” to the microcontroller and the animation was activated.

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 14

References

CCS C Compiler Manual. Ccsinfo.com. (2021). Retrieved from

https://www.ccsinfo.com/downloads/ccs_c_manual.pdf.

PIC18F2455/2550/4455/4550 Data Sheet. Ww1.microchip.com. (2006). Retrieved from

https://ww1.microchip.com/downloads/en/devicedoc/39632c.pdf.

Proteus Tutorial : Getting Started with Proteus PCB Design (Version 8.6). Youtube.com. (2017).

Retrieved from https://www.youtube.com/watch?v=GYAHwYUUs34.

Simple LED Circuits. Electronics Hub. (2017). Retrieved from

https://www.electronicshub.org/simple-led-circuits/.

https://www.ccsinfo.com/downloads/ccs_c_manual.pdf
https://ww1.microchip.com/downloads/en/devicedoc/39632c.pdf
https://www.youtube.com/watch?v=GYAHwYUUs34
https://www.electronicshub.org/simple-led-circuits/

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 15

Appendix. Figures with high resolution

Figure 1. Connections

RA0/AN0
2

RA1/AN1
3

RA2/AN2/VREF-/CVREF
4

RA3/AN3/VREF+
5

RA4/T0CKI/C1OUT/RCV
6

RA5/AN4/SS/LVDIN/C2OUT
7

RA6/OSC2/CLKO
14

OSC1/CLKI
13

RB0/AN12/INT0/FLT0/SDI/SDA
33

RB1/AN10/INT1/SCK/SCL
34

RB2/AN8/INT2/VMO
35

RB3/AN9/CCP2/VPO
36

RB4/AN11/KBI0/CSSPP
37

RB5/KBI1/PGM
38

RB6/KBI2/PGC
39

RB7/KBI3/PGD
40

RC0/T1OSO/T1CKI
15

RC1/T1OSI/CCP2/UOE
16

RC2/CCP1/P1A
17

VUSB
18

RC4/D-/VM
23

RC5/D+/VP
24

RC6/TX/CK
25

RC7/RX/DT/SDO
26

RD0/SPP0
19

RD1/SPP1
20

RD2/SPP2
21

RD3/SPP3
22

RD4/SPP4
27

RD5/SPP5/P1B
28

RD6/SPP6/P1C
29

RD7/SPP7/P1D
30

RE0/AN5/CK1SPP
8

RE1/AN6/CK2SPP
9

RE2/AN7/OESPP
10

RE3/MCLR/VPP
1

U1

PIC18F4550

R1
330

R2
330

R3
330

R4
330

R5
330

R6
330

R7
330

R8
330

D1
LED-RED

D2
LED-RED

D3
LED-RED

D4
LED-RED

D5
LED-RED

D6
LED-RED

D7
LED-RED

D8
LED-RED

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 16

Figure 2. Timer0 block diagram

Oscillator

Fosc / 4

 Prescaler

Timer 0

Frequency division 1/n
1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256

IRQ

Fosc=48 MHz

 Τ = Machine Cycle

𝑇 =
1

12𝑀𝐻𝑧
=

1

12𝑥106𝐻𝑧
= 0,08333𝑥10−6 = 83,33𝑥10−9 = 83,33 𝑛𝑠

MC = 83,33 ns MC → Machine Cycle

 𝑓 =
1

𝑇
 =12 MHz in the input of the prescaler

Interrupt Request

T input_timer=n.T

Finput_timer=f/n

ENGINE ERASMUS+ 2020-1-PL01-KA226-HE-095653 Page | 17

