

ENGINE ERASMUS+ 2020‐1‐PL01‐KA226‐HE‐095653 Page | 1

Teaching online electronics, microcontrollers and
programming in Higher Education

Hardware Implementation of Algorithms

9. Block RAM memory in FPGA ‐ example of use.

Lead Partner: Warsaw University of Technology

Author: Lukasz Mik

University of Applied Sciences in Tarnow

Declaration

GRANT NUMBER: 2020‐1‐PL01‐KA226‐HE‐095653

ENGINE ERASMUS+ 2020‐1‐PL01‐KA226‐HE‐095653 Page | 2

This laboratory instruction has been prepared in the context of the ENGINE project. Where other
published and unpublished source materials have been used, these have been acknowledged.

Copyright

© Copyright 2021 - 2023 the ENGINE Consortium

Warsaw University of Technology (Poland)

International Hellenic University (IHU) (Greece)

European Lab for Educational Technology- EDUMOTIVA (Greece)

University of Padova (Italy)

University of Applied Sciences in Tarnow (Poland)

All rights reserved.

This document is licensed to the public under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.

Funding Disclaimer

This project has been funded with support from the European Commission. This report reflects the
views only of the author, and the Commission cannot be held responsible for any use which may be
made of the information contained therein.

ENGINE ERASMUS+ 2020‐1‐PL01‐KA226‐HE‐095653 Page | 3

I. Displaying images stored in block RAM memory
of Spartan‐3A on a VGA monitor screen.

The Spartan-3A chip on the Numato Elbert V2 board has a block RAM memory with

a total capacity of 54 kb and a distributed memory (consisting of configurable logical blocks)

with a capacity of 11 kb. In the course we will deal with the use of block memory (BRAM).

Before starting the exercise, download the source files for the project from the

"VHDL Sources" folder and save them in a folder with the appropriate name.

During the classes, the VGA port will be used, the connection diagram of which with the

FPGA is shown in the figure below.

It shows that it contains 3 simple DACs in the form of resistor ladders. For the colors:

red and green, it is a 3-bit converter, while for the blue color it is only 2-bit. Therefore, it is

necessary to convert the 8-bit values of the RGB color components (read from the BMP file)

to the target values corresponding to the lengths of the bit vectors for the DACs. For the

exercise, a script called image_converter.m was prepared in the Matlab environment. Its task

is to load a BMP file, reduce the bit length of individual RGB components and save the data

vector obtained in this way to a file with the *.coe extension.

The Matlab script generates a data vector in the form of binary strings, so in the first line of

the *.coe file the number 2 is given as the base of the number system. In the next line, the

ENGINE ERASMUS+ 2020‐1‐PL01‐KA226‐HE‐095653 Page | 4

data vector begins, each value is stored in a separate line. A fragment of the *.coe file is

shown below.

STEP 1: Creating a new project, adding source files and a memory component using

 the IP Core generator.

Start ISE Design Suite 14.7, from the File menu, select New Project. Enter the

appropriate name of the project, e.g. block_ram_vga, and in the next window set the

following target chip for the project being created:

After creating the project and adding the previously downloaded source files, all added files

and the type of the selected chip should appear in the Design window:

ENGINE ERASMUS+ 2020‐1‐PL01‐KA226‐HE‐095653 Page | 5

From the Project menu, select New Source. In the window that appears, select the IP

(Coregen & Architecture Wizard) module. Enter rom_inst as the name.

In the next window, expand the group Memories & Storage Elements → RAMs & ROMs →

Block Memory Geneerator 7.3.

ENGINE ERASMUS+ 2020‐1‐PL01‐KA226‐HE‐095653 Page | 6

After selecting the option, the memory generator window will appear, where we go to the

2nd configuration page, where we select the memory type by setting the Single Port ROM

option.

On the next, third page, enter the size of the data vector (Memory Size → Width) and the

number of these vectors (Memory Size →Depth). This is the memory width and depth that

we define. We do not change the name of the component. Check the Always Enabled option..

64x64 piksele = 4096

RGB = 8 bitów

ENGINE ERASMUS+ 2020‐1‐PL01‐KA226‐HE‐095653 Page | 7

On page 4 of the memory configurator, we leave the window with default settings except Memory

Initialization, where we load the file named lake.coe with the ROM initialization vector, created from

BRAM memory cells.

On the following memory configuration pages, leave the default settings and click the

Generate button.

Depending on the performance of the computer, the process of generating ROM memory

from BRAM memory cells may take from several dozen seconds to several minutes. After

correct execution of this operation, an additional file named rom_inst.xco will appear in the

window with the project's source files, which is an instance of the ROM memory with the

image already uploaded, which will be displayed on the VGA screen later.

After generating a memory block, you can see its functional description in VHDL language.

Select it, expand the CORE Generator branch in the Processes window and double-click on

the View HDL Functional Model option.

ENGINE ERASMUS+ 2020‐1‐PL01‐KA226‐HE‐095653 Page | 8

STEP 2: Adding a digital clock manager (DCM) to the project, whose task will be to

 generate a clock signal with a frequency of 25 MHz.

We add a new source to the project and using the IP Core generator we add a DCM

block by typing dcm_ins as its name.

ENGINE ERASMUS+ 2020‐1‐PL01‐KA226‐HE‐095653 Page | 9

In the next two steps, we confirm the settings and select the VHDL language as the source

language for the DCM block instance. Then we set the parameters of the clock signal at the

input - 12 MHz and select the CLKFX output, uncheck the rest.

After pressing the Next button in this window and in the next one, the DCM block configurator will

take you to the clock frequency synthesizer page. In the synthesizer window, we specify the output

clock frequency of 25 MHz. It is necessary for the proper operation of the video signal generator for

a monitor with a VGA port, working with a resolution of 640 x 480 pixels. These performance

parameters of a VGA monitor are defined by the VESA standard.

ENGINE ERASMUS+ 2020‐1‐PL01‐KA226‐HE‐095653 Page | 10

W projekcie powinien się pojawić plik dcm_inst.xaw

UWAGA: VHDL code with memory usage example is included in the files attached to the
 exercise. In the block_ram_vga.vhd file, remove comments from a significant
 part of the code:

 component rom_inst
 port (
 clka : IN std_logic;
 addra : IN std_logic_vector(11 DOWNTO 0);
 douta : OUT std_logic_vector(7 DOWNTO 0));
 end component;

...

ROM1 : rom_inst port map(clock,address,data);

and

component dcm_inst
port(
 CLKIN_IN : IN std_logic;
 CLKFX_OUT : OUT std_logic
);

ENGINE ERASMUS+ 2020‐1‐PL01‐KA226‐HE‐095653 Page | 11

end component;
...

DCM1: dcm_inst PORT MAP(CLKIN_IN => clk , CLKFX_OUT => clk_25);

After compiling the project and generating the block_ram_vga.bit configuration file,

program the target system and check the effect of the system operation on the VGA monitor

screen.

Tasks:

1. Generate another initialization vector for the ROM from the image using the

image_converter.m script. BMP files with dimensions of 64x64 pixels have been

made available for practice in a separate directory.

2. Generate its negative on the screen next to the original image.

3. Redo the project so that it displays monochrome images, in which pixels have

binary values of 0 or 1. Reducing the width of the data bus to 1 bit will enable

displaying images with a resolution of 128 x 128 pixels.

ENGINE ERASMUS+ 2020‐1‐PL01‐KA226‐HE‐095653 Page | 12

References

 J. Majewski, P. Zbysiński – Układy FPGA w przykładach. Wydawnictwo BTC, Legionowo
2007.

